On the approximation of continuous functions by analytic solutions of universal functional-differential equations

2004 ◽  
Vol 41 (1) ◽  
pp. 1-15 ◽  
Author(s):  
C. Elsner
1985 ◽  
Vol 101 (3-4) ◽  
pp. 253-271 ◽  
Author(s):  
O. A. Arino ◽  
T. A. Burton ◽  
J. R. Haddock

SynopsisWe consider a system of functional differential equationswhere G: R × B → Rn is T periodic in t and B is a certain phase space of continuous functions that map (−∞, 0[ into Rn. The concepts of B-uniform boundedness and B-uniform ultimate boundedness are introduced, and sufficient conditions are given for the existence of a T-periodic solution to (1.1). Several examples are given to illustrate the main theorem.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 259-262 ◽  
Author(s):  
J. G. Dos Reis ◽  
R. L. S. Baroni

SynopsisLet Ca be the set of all the continuous functions from the interval [−r, 0] on the sphere of radius a, on the plane. We prove, under certains conditions, that a retarded autonomous differential equation that leaves Ca invariant has a non-constant periodic solution.


2003 ◽  
Vol 2003 (26) ◽  
pp. 1645-1661 ◽  
Author(s):  
Hernán R. Henríquez

We establish existence of mild solutions for a class of semilinear first-order abstract retarded functional differential equations (ARFDEs) with infinite delay and we prove that the set consisting of mild solutions for this problem is connected in the space of continuous functions.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 656 ◽  
Author(s):  
Gani Stamov ◽  
Ivanka Stamova ◽  
Xiaodi Li ◽  
Ekaterina Gospodinova

The present paper is devoted to the problems of practical stability with respect to h-manifolds for impulsive control differential equations with variable impulsive perturbations. We will consider these problems in light of the Lyapunov–Razumikhin method of piecewise continuous functions. The new results are applied to an impulsive control cellular neural network model with variable impulsive perturbations.


1996 ◽  
Vol 7 (1) ◽  
pp. 11-30 ◽  
Author(s):  
Yunkang Liu

This paper discusses the initial value problemwhereA, BiandCiared × dcomplex matrices,pi,qi∈ (0, 1),i= 1, 2, …, andy0is a column vector in ℂd. By using ideas from the theory of ordinary differential equations and the theory of functional equations, we give a comprehensive analysis of the asymptotic behaviour of analytic solutions of this initial value problem.


1994 ◽  
Vol 25 (3) ◽  
pp. 195-207
Author(s):  
LUIZ FICHMANN

We extend the natural description of the spectrum for the flow of the linear equation $\frac{d}{dt}Dx_t=Lx_t$ from the context of continuous functions to the context of regulated right-continuous functions.


Sign in / Sign up

Export Citation Format

Share Document