Two-weight norm estimates for sublinear integral operators in variable exponent Lebesgue spaces

2014 ◽  
Vol 51 (3) ◽  
pp. 384-406 ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi

Two-weight norm estimates for sublinear integral operators involving Hardy-Littlewood maximal, Calderón-Zygmund and fractional integral operators in variable exponent Lebesgue spaces are derived. Operators and the space are defined on a quasi-metric measure space with doubling condition. The derived conditions are written in terms ofLp(·)norms and are simultaneously necessary and sufficient for appropriate inequalities for maximal and fractional integral operators mainly in the case when weights are of radial type.

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Canqin Tang ◽  
Qing Wu ◽  
Jingshi Xu

By some estimates for the variable fractional maximal operator, the authors prove that the fractional integral operator is bounded and satisfies the weak-type inequality on variable exponent Lebesgue spaces.


2019 ◽  
Vol 22 (5) ◽  
pp. 1269-1283 ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Mieczysław Mastyło ◽  
Alexander Meskhi

Abstract We establish necessary and sufficient conditions for the compactness of fractional integral operators from Lp(X, μ) to Lq(X, μ) with 1 < p < q < ∞, where μ is a measure on a quasi-metric measure space X. As an application we obtain criteria for the compactness of fractional integral operators defined in weighted Lebesgue spaces over bounded domains of the Euclidean space ℝn with the Lebesgue measure, and also for the fractional integral operator associated to rectifiable curves of the complex plane.


2010 ◽  
Vol 106 (2) ◽  
pp. 283 ◽  
Author(s):  
Oscar Blasco ◽  
Vicente Casanova ◽  
Joaquín Motos

Given a metric measure space $(X,d,\mu)$, a weight $w$ defined on $(0,\infty)$ and a kernel $k_w(x,y)$ satisfying the standard fractional integral type estimates, we study the boundedness of the operators $K_w f(x)=\int_X k_w(x,y)f(y)\,d\mu(y)$ and $\tilde K_w f(x)=\int_X (k_w(x,y)-k_w(x_0,y))f(y)\,d\mu(y)$ on Lebesgue spaces $L^p(\mu)$ and generalized Lipschitz spaces $\mathrm{Lip}_\phi$, respectively, for certain range of the parameters depending on the $n$-dimension of $\mu$ and some indices associated to the weight $w$.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xukui Shao ◽  
Shuangping Tao

In this paper, the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent weak Morrey spaces based on the results of Lebesgue space with variable exponent as the infimum of exponent function p(·) equals 1. The corresponding commutators generated by BMO and Lipschitz functions are considered, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Muhammad Sarwar ◽  
Ghulam Murtaza ◽  
Irshaad Ahmed

One-weight inequalities with general weights for Riemann-Liouville transform andn-dimensional fractional integral operator in variable exponent Lebesgue spaces defined onRnare investigated. In particular, we derive necessary and sufficient conditions governing one-weight inequalities for these operators on the cone of nonnegative decreasing functions inLp(x)spaces.


Sign in / Sign up

Export Citation Format

Share Document