scholarly journals Riemann-Liouville and Higher Dimensional Hardy Operators for NonNegative Decreasing Function inLp(·)Spaces

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Muhammad Sarwar ◽  
Ghulam Murtaza ◽  
Irshaad Ahmed

One-weight inequalities with general weights for Riemann-Liouville transform andn-dimensional fractional integral operator in variable exponent Lebesgue spaces defined onRnare investigated. In particular, we derive necessary and sufficient conditions governing one-weight inequalities for these operators on the cone of nonnegative decreasing functions inLp(x)spaces.

Author(s):  
Humberto Rafeiro ◽  
Makhmadiyor Yakhshiboev

AbstractAfter recalling some definitions regarding the Chen fractional integro-differentiation and discussing the pro et contra of various ways of truncation related to Chen fractional differentiation, we show that, within the framework of weighted Lebesgue spaces with variable exponent, the Chen-Marchaud fractional derivative is the left inverse operator for the Chen fractional integral operator.


2019 ◽  
Vol 22 (5) ◽  
pp. 1269-1283 ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Mieczysław Mastyło ◽  
Alexander Meskhi

Abstract We establish necessary and sufficient conditions for the compactness of fractional integral operators from Lp(X, μ) to Lq(X, μ) with 1 < p < q < ∞, where μ is a measure on a quasi-metric measure space X. As an application we obtain criteria for the compactness of fractional integral operators defined in weighted Lebesgue spaces over bounded domains of the Euclidean space ℝn with the Lebesgue measure, and also for the fractional integral operator associated to rectifiable curves of the complex plane.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Leonardo Fabio Chacón-Cortés ◽  
Humberto Rafeiro

In this paper, we prove the boundedness of the fractional maximal and the fractional integral operator in the p -adic variable exponent Lebesgue spaces. As an application, we show the existence and uniqueness of the solution for a nonhomogeneous Cauchy problem in the p -adic variable exponent Lebesgue spaces.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Canqin Tang ◽  
Qing Wu ◽  
Jingshi Xu

By some estimates for the variable fractional maximal operator, the authors prove that the fractional integral operator is bounded and satisfies the weak-type inequality on variable exponent Lebesgue spaces.


2006 ◽  
Vol 4 (3) ◽  
pp. 261-273 ◽  
Author(s):  
Canqin Tang

LetGbe a locally compact Vilenkin group. In this paper, the authors investigate the boundedness of multilinear commutators of fractional integral operator on Lebesgue spaces onG. Furthermore, the boundedness on Hardy spaces are also obtained in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Liwei Wang ◽  
Meng Qu ◽  
Lisheng Shu

By decomposing functions, we establish estimates for higher order commutators generated by fractional integral with BMO functions or the Lipschitz functions on the homogeneous Herz spaces with variable exponent. These estimates extend some known results in the literatures.


2014 ◽  
Vol 51 (3) ◽  
pp. 384-406 ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi

Two-weight norm estimates for sublinear integral operators involving Hardy-Littlewood maximal, Calderón-Zygmund and fractional integral operators in variable exponent Lebesgue spaces are derived. Operators and the space are defined on a quasi-metric measure space with doubling condition. The derived conditions are written in terms ofLp(·)norms and are simultaneously necessary and sufficient for appropriate inequalities for maximal and fractional integral operators mainly in the case when weights are of radial type.


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


Sign in / Sign up

Export Citation Format

Share Document