Polynomial rings over NLI rings need not be NLI

2015 ◽  
Vol 52 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Weixing Chen

It is proved that there exists an NI ring R over which the polynomial ring R[x] is not an NLI ring. This answers an open question of Qu and Wei (Stud. Sci. Math. Hung., 51(2), 2014) in the negative. Moreover a sufficient condition of R[x] to be an NLI ring is included for an NLI ring R.

2016 ◽  
Vol 59 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Mark Batell ◽  
Jim Coykendall

AbstractThe elasticity of an atomic integral domain is, in some sense, a measure of how far the domain is from being a half-factorial domain. We consider the relationship between the elasticity of a domain R and the elasticity of its polynomial ring R[x]. For example, if R has at least one atom, a sufficient condition for the polynomial ring R[x] to have elasticity 1 is that every non-constant irreducible polynomial f ∈ R[x] be irreducible in K[x]. We will determine the integral domains R whose polynomial rings satisfy this condition.


2015 ◽  
Vol 58 (2) ◽  
pp. 233-240
Author(s):  
Jeffrey Bergen

AbstractWe classify the affine actions of Uq(sl(2)) on commutative polynomial rings in m ≥ 1 variables. We show that, up to scalar multiplication, there are two possible actions. In addition, for each action, the subring of invariants is a polynomial ring in either m or m−1 variables, depending upon whether q is or is not a root of 1.


10.37236/6783 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Mitchel T. Keller ◽  
Stephen J. Young

We develop combinatorial tools to study the relationship between the Stanley depth of a monomial ideal $I$ and the Stanley depth of its compliment, $S/I$. Using these results we are able to prove that if $S$ is a polynomial ring with at most 5 indeterminates and $I$ is a square-free monomial ideal, then the Stanley depth of $S/I$ is strictly larger than the Stanley depth of $I$. Using a computer search, we are able to extend this strict inequality up to polynomial rings with at most 7 indeterminates. This partially answers questions asked by Propescu and Qureshi as well as Herzog.


1984 ◽  
Vol 36 (2) ◽  
pp. 206-239 ◽  
Author(s):  
E. Jespers ◽  
P. Wauters

The aim of this note is to study the class group of a central Ω-Krull ring and to determine in some cases whether a twisted (semi) group ring is a central Ω-Krull ring. In [8] we defined an Ω-Krull ring as a generalization of a commutative Krull domain. In the commutative theory, the class group plays an important role. In the second and third section, we generalize some results to the noncommutative case, in particular the relation between the class group of a central Ω-Krull ring and the class group of a localization. Some results are obtained in case the ring is graded. Theorem 3.2 establishes the relation between the class group and the graded class group. In particular, in the P.I. case we obtain that the class group is equal to the graded class group. As a consequence of a result on direct limits of Ω-Krull rings, we are able to derive a necessary and sufficient condition in order that a polynomial ring R[(Xi)i∊I] (I may be infinite) is a central Ω-Krull ring.


2014 ◽  
Vol 57 (3) ◽  
pp. 609-613 ◽  
Author(s):  
Alireza Nasr-Isfahani

AbstractWe provide necessary and sufficient conditions for a skew polynomial ring of derivation type to be semiprimitive when the base ring has no nonzero nil ideals. This extends existing results on the Jacobson radical of skew polynomial rings of derivation type.


Author(s):  
D. D. Anderson ◽  
Ranthony A. C. Edmonds

Given a certain factorization property of a ring [Formula: see text], we can ask if this property extends to the polynomial ring over [Formula: see text] or vice versa. For example, it is well known that [Formula: see text] is a unique factorization domain if and only if [Formula: see text] is a unique factorization domain. If [Formula: see text] is not a domain, this is no longer true. In this paper, we survey unique factorization in commutative rings with zero divisors, and characterize when a polynomial ring over an arbitrary commutative ring has unique factorization.


1987 ◽  
Vol 101 (3) ◽  
pp. 509-521 ◽  
Author(s):  
Janet Aisbett ◽  
Victor Snaith

Write F for the finite field, , having 2m elements. Let W2(F) denote the Witt vectors of length two over F (for a definition, see [4] or [10], §10). Write F(q) for the truncated polynomial ring, F[t]/(tq).


2015 ◽  
Vol 14 (05) ◽  
pp. 1550064
Author(s):  
Hong Kee Kim ◽  
Nam Kyun Kim ◽  
Tai Keun Kwak ◽  
Yang Lee ◽  
Hidetoshi Marubayashi

Antoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced the concept of nil-Armendariz property as a generalization. Hong et al. studied Armendariz property on skew polynomial rings and introduced the notion of an α-Armendariz ring, where α is a ring monomorphism. In this paper, we investigate the structure of the set of α-nilpotent elements in α-Armendariz rings and introduce an α-nil-Armendariz ring. We examine the set of [Formula: see text]-nilpotent elements in a skew polynomial ring R[x;α], where [Formula: see text] is the monomorphism induced by the monomorphism α of an α-Armendariz ring R. We prove that every polynomial with α-nilpotent coefficients in a ring R is [Formula: see text]-nilpotent when R is of bounded index of α-nilpotency, and moreover, R is shown to be α-nil-Armendariz in this situation. We also characterize the structure of the set of α-nilpotent elements in α-nil-Armendariz rings, and investigate the relations between α-(nil-)Armendariz property and other standard ring theoretic properties.


2020 ◽  
Vol 27 (03) ◽  
pp. 587-598
Author(s):  
M’hammed El Kahoui ◽  
Najoua Essamaoui ◽  
Mustapha Ouali

Let R be a commutative ring with unity and SAn(R) be the group of volume-preserving automorphisms of the polynomial R-algebra R[n]. Given a proper ideal 𝔞 of R, we address in this paper the question of whether the canonical group homomorphism SAn(R) → SAn(R/𝔞) is surjective. As an application, we retrieve and generalize, in a unified way, several known results on residual coordinates in polynomial rings.


1956 ◽  
Vol 8 ◽  
pp. 355-361 ◽  
Author(s):  
S. A. Amitsur

Introduction. Let R be a ring and let R[x] be the ring of all polynomials in a commutative indeterminate x over R. Let J(R) denote the Jacobson radical (5) of the ring R and let L(R) be the lower radical (4) of R. The main object of the present note is to determine the radicals J(R[x]) and L(R[x]). The Jacobson radical J(R[x]) is shown to be a polynomial ring N[x] over a nil ideal N of R and the lower radical L(R[x]) is the polynomial ring L(R)[x].


Sign in / Sign up

Export Citation Format

Share Document