scholarly journals Synthesis of dense nanometric MoSi2 through mechanical and field activation

2001 ◽  
Vol 16 (5) ◽  
pp. 1439-1448 ◽  
Author(s):  
R. Orrù ◽  
J. Woolman ◽  
G. Cao ◽  
Z. A. Munir

The effect of mechanical and field activation on the synthesis of dense nanometric MoSi2 was investigated. Powders of Mo and Si, milled separately or comilled in a planetary ball mill, were reacted in a spark plasma synthesis (SPS) apparatus under different electric current conditions. Milled powders reacted faster and required less current than unmilled powders. Mixtures of powders which were milled separately (to nanometric size) reacted in the SPS to produce micrometric α–MoSi2. Similar results were obtained for samples comilled to produce nanometric reactants which did not contain detectable amounts of the product phase. When products form during milling, they contain both the α and β modifications of MoSi2. The product after the SPS reaction was nanometric MoSi2 with a crystallite size of 140 nm.

2011 ◽  
Vol 65 (19-20) ◽  
pp. 3080-3082 ◽  
Author(s):  
Clara Musa ◽  
Roberto Orrù ◽  
Roberta Licheri ◽  
Giacomo Cao

2006 ◽  
Vol 45 ◽  
pp. 1411-1416
Author(s):  
Antonio Mario Locci ◽  
Roberta Licheri ◽  
Roberto Orrù ◽  
A. Cincotti ◽  
Giacomo Cao

Spark Plasma Sintering (SPS) represents a very attractive technique for the obtainment of dense materials including nanostructured ones. SPS basically consists in the simultaneous application of a pulsed DC current and an uniaxial mechanical load through a powder compact. Other than providing rapid Joule heating and likely enhancing mass transport through electromigration, the imposed pulsed high current is also reported to generate a plasma within the voids surrounding the powder particles, thus facilitating the removal of oxides surface layers that may hinder the sintering process. Selected results obtained through SPS in our laboratory for the preparation of a wide variety of materials, i.e. TiC-TiB2, MgB2, and NbAl3, will be presented in this work. Specifically, all the chosen examples are related to the use of the SPS technique for obtaining the desired material by simultaneously performing synthesis and consolidation stages in one-step.


2020 ◽  
Vol 65 (2) ◽  
pp. 263-270 ◽  
Author(s):  
E. K. Papynov ◽  
O. O. Shichalin ◽  
I. Yu. Buravlev ◽  
A. S. Portnyagin ◽  
A. A. Belov ◽  
...  

2016 ◽  
Vol 821 ◽  
pp. 399-404 ◽  
Author(s):  
Monika Vilémová ◽  
Barbara Nevrlá ◽  
Zdenek Pala ◽  
Lenka Kocmanová ◽  
Marek Janata ◽  
...  

Tungsten is currently considered as the most suitable plasma facing material for the first wall of a nuclear fusion reactor. First wall will be subjected to harsh conditions that will gradually deteriorate properties of the wall material. Some studies point out that fine-grained tungsten could be more resistant to the structure and property changes than coarse-grained tungsten. However, tailoring of tungsten microstructure is very laborious. Due to its high melting point, tungsten is very often processed mechanically and subsequently sintered into a compact body. In this study, preparation of ultrafine-grained tungsten by mechanical processing in a planetary ball mill was examined. Three types of tungsten samples were compared. One was made from coarse grained tungsten powder consolidated by SPS (spark plasma sintering). Other two samples were prepared from the powder processed in a planetary ball mill with and without addition of Y2O3. After ball milling, the powders were consolidated by SPS, i.e. fast sintering process that allows preserving fine-grained structure of the powder material. Properties of the samples such as hardness and thermal conductivity were examined and correlated with the processing history and microstructure.


Sign in / Sign up

Export Citation Format

Share Document