crystallite size
Recently Published Documents


TOTAL DOCUMENTS

1722
(FIVE YEARS 353)

H-INDEX

80
(FIVE YEARS 9)

2022 ◽  
Vol 57 ◽  
pp. 101880
Author(s):  
Renata O. da Fonseca ◽  
Antonella R. Ponseggi ◽  
Raimundo C. Rabelo-Neto ◽  
Rita C.C. Simões ◽  
Lisiane V. Mattos ◽  
...  

Author(s):  
Priya Gupta ◽  
Kuldeep Kumar ◽  
Syed Hasan Saeed ◽  
Narendra Kumar Pandey ◽  
Vernica Verma ◽  
...  

Abstract This research deals with study of enhanced liquefied petroleum gas (LPG) and humidity sensing properties of Sn-doped NiO pellets synthesized by chemical precipitation route. XRD, FTIR, SEM, and UV–Vis studies were employed to understand the effect of Sn doping on the structural, morphological, and optical properties of the NiO nanoparticles. XRD results revealed that doping of tin in NiO had a significant impact on the crystallite size, peak intensity, strain, lattice parameter, etc. The calculated crystallite size of pure and 3 mol% doped NiO was 33.2 nm and 13.3 nm, respectively. SEM micrographs revealed that the structure of the samples was irregular spheres and non-homogeneous. The dependence of LPG sensing properties on the structural and surface morphological properties has also been studied. The maximum response of 30.46% to 2.0 vol% of LPG was observed at room temperature (300 K). The same sample also shows high humidity sensing response of 87.11% towards 90% RH. Graphic abstract


2022 ◽  
Vol 130 (1) ◽  
pp. 130
Author(s):  
Deren P.J ◽  
Watras A. ◽  
Stefanska D.

ZnAl2O4 nanocrystallites doped with Cr3+ ions with mean sizes ranging from 2 to 16 nm were synthesized by the hydrothermal method. Chromium ions occupy the aluminum positions, which symmetry depends on the crystallite size. The smallest nanocrystals have a much larger unit cell than the bigger ones. The metal to ligand distance increases when the size of the nanocrystals decreases. This causes the nephelauxetic effect, which is for the first time (to our knowledge) observed as a size effect. It was also observed that ZnAl2O4: Cr3+ nanocrystals with size larger than 10 nm possesses the same spectroscopic properties as monocrystal.


2022 ◽  
Vol 64 (1) ◽  
pp. 3
Author(s):  
А.А. Берзин ◽  
А.И. Морозов ◽  
А.С. Сигов

The conditions for the appearance in systems with defects of the "random local field" and "random local anisotropy" type of the Imry-Ma phases, in which the direction of the order parameter follows large-scale fluctuations of a random field or random anisotropy, are considered. It is shown that the anisotropy of the distribution of random fields of defects in the space of the order parameter can lead to the appearance of the long-range order. An attention is paid to phase diagrams arising as a result of competition between random fields of defects and anisotropy induced by defects. By the example of a system with random anisotropy (nanocrystalline ferromagnet), the dependences of the coercive field on the crystallite size are considered.


Author(s):  
Niranjan Kumar ◽  
Aleksey Vladimirovich Nezhdanov ◽  
Sergey Garakhin ◽  
Pavel Yunin ◽  
Vladimir N. Polkovnikov ◽  
...  

Abstract The crystallinity of the tungsten (W) phase was improved with an increase in the thickness of this layer in the periodic W/Si multilayer structure. Both the α- and β- W phases were grown simultaneously and the contribution of these phases has modified upon a change in the thickness of the W layers. For thinner W layers, the thermodynamically metastable β- W phase was dominated, and with an increase in thickness, this phase has suppressed, and the stable α- W phase became prominent. The crystallite size of these phases was almost linearly proportional to the thickness of the W layers in the multilayers. With the increase in thickness of Si layers in multilayers, Raman scattering showed a decrease in bond-angle deviation of Si-Si bonding in the amorphous Si phase. The study revealed, ordering of Si-Si bonding in the amorphous phase of Si with an increase in thickness of these layers in periodic W/Si multilayers.


2021 ◽  
Author(s):  
Ozan Unsalan ◽  
Aliye Oten ◽  
Bahattin Yaman

Abstract In this paper, we report the crystallite size of the graphitic phase observed in a soot ink sample prepared based on an original Ottoman recipe in the 18th century for the first time. Intensity ratio of the D and G bands that were observed at 1384 and 1609 cm-1 respectively, revealed that the crystallite size is 24.33 nm. This corresponds to a carbon phase between graphitic and well graphitic stage. We strongly believe that this could be further used particularly for dating purposes by investigating carbon-black pigments which we have not encountered its consideration in the literature for mainly manuscripts. Here, we especially propose using the Tuinstra-Koenig relationship together with the consideration of D and G band profiles to derive the crystallite size of the graphitic phase observed in soot ink and other various carbon-black inks for the purpose of manuscript dating.


2021 ◽  
Vol 1 (4) ◽  
pp. 211-216
Author(s):  
Maryam Akhlaghi ◽  
Esmaeil Salahi ◽  
Seyed Ali Tayebifard ◽  
Gert Schmidt

In this research, the 2nd part of a series of papers on the processing and characterization of TiAl–Ti3AlC2 composites, the phase evolution during the manufacturing process was investigated by X-ray diffraction (XRD) analysis and Rietveld refinement method. Metallic Ti and Al powders with different amounts of previously-synthesized Ti3AlC2 additives (10, 15, 20, 25 and 30 wt%) were ball-milled and densified by spark plasma sintering (SPS) under 40 MPa for 7 min at 900 °C. Before the sintering process, XRD test verified that the powder mixtures contained metallic Ti and Al as well as Ti3AlC2 and TiC (lateral phase synthesized with Ti3AlC2) phases. In the sintered composites, the in-situ synthesis of TiAl and Ti3Al intermetallics as well as the presence of Ti3AlC2 and the formation and Ti2AlC MAX phases were disclosed. The weight percentage of each phase in the final composition of the samples and the crystallite size of different phases were calculated by the Rietveld refinement method based on the XRD patterns. The size of Ti3AlC2 crystallites in sintered samples was compared with the crystallite size of synthesized Ti3AlC2 powder.


2021 ◽  
Author(s):  
Chan Kok Sheng ◽  
◽  
Yousef Mohammad Alrababah ◽  

The present research demonstrates a detailed discussion for the effect of annealing temperature on the structural transformation and surface morphology of the CdS nanoparticles synthesized using the precipitation method without surfactant in KOH alkaline medium. The annealing temperature used was in the range of 160 – 480 oC. The samples structural, functional group and morphological properties were investigated by using XRD, FTIR and SEM techniques. XRD analysis reveals that the CdS has gradually been transformed from the pure cubic to hexagonal polycrystalline structure as well as improved crystallinity upon increasing the temperature. Besides, the parameters of average crystallite size and dislocation density were calculated using the established Debye- Scherrer equation. The average crystallite size was in nano-dimension and increases gradually with temperature. The FTIR spectra indicate that the characteristic vibration band of CdS emerged in the lower wavenumber region of 650 and 500 cm-1, and the band becomes stronger as the temperature rises. Also, the SEM images demonstrate that the CdS exhibits uniform spherical morphology and the particle size grows larger at elevated temperatures. The improved crystallinity and structural properties tuning ability against temperature allows beneficial optical applications as solar cells, photocatalysts, non-linear optics, light emitting diodes and optoelectronic devices.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 143
Author(s):  
Aleksander Albrecht ◽  
Dariusz Moszyński

An artificially prepared nanocrystalline iron sample with bimodal crystallite size distribution was nitrided and denitrided in the NH3/H2 atmosphere at 350 °C and 400 °C. The sample was a 1:1 mass ratio mixture of two iron samples with mean crystallite sizes of 48 nm and 21 nm. Phase transformations between α-Fe, γ’-Fe4N and ε-Fe3-2N were observed by the in situ X-ray powder diffraction method. At selected steps of nitriding or denitriding, phase transformations paused at 50% of mass conversion and resumed after prominent variation of the nitriding atmosphere. This effect was attributed to the separation of phase transformations occurring between sets of iron crystallites of 48 nm and 21 nm, respectively. This was due to the Gibbs–Thomson effect, which establishes the dependence of phase transformation conditions on crystallite sizes.


Sign in / Sign up

Export Citation Format

Share Document