Low-cycle fatigue behavior and life prediction of fine-grained 316LN austenitic stainless steel

2020 ◽  
Vol 35 (23-24) ◽  
pp. 3180-3191
Author(s):  
Zhe Zhang ◽  
An Li ◽  
Yanping Wang ◽  
Qiang Lin ◽  
Xu Chen

Abstract

Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

In February/March 2007, The NRC issued Regulatory Guide “RG1.207” and Argonne National Laboratory issued NUREG/CR-6909 that is now applicable in the US for evaluations of PWR environmental effects in fatigue analyses of new reactor components. In order to assess the conservativeness of the application of this NUREG report, Low Cycle Fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in air environment a fatigue behavior consistent with the ANL reference “air” mean curve, as published in NUREG/CR-6909. LCF tests in a PWR environment were performed at various strain amplitude levels (± 0.6% or ± 0.3%) for two loading conditions corresponding to a simple or to a complex strain rate history. The simple loading condition is a fully reverse triangle signal (for comparison purposes with tests performed by other laboratories with the same loading conditions) and the complex signal simulates the strain variation for an actual typical PWR thermal transient. In addition, two various surface finish conditions were tested: polished and ground. This paper presents the comparisons of penalty factors, as observed experimentally, with penalty factors evaluated using ANL formulations (considering the strain integral method for complex loading), and on the other, the comparison of the actual fatigue life of the specimen with the fatigue life predicted through the NUREG report application. For the two strain amplitudes of ± 0.6% and ± 0.3%, LCF tests results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates give “Fen” penalty factors close to those estimated using the ANL formulation (NUREG/6909). However, for the lower strain amplitude level and a triangle loading signal, the ANL formulation is pessimistic compared to the AREVA NP test results obtained for polished specimens. Finally, it was observed that constant amplitude LCF test results obtained on ground specimens under complex loading simulating an actual sequence of a cold and hot thermal shock exhibits lower combined environmental and surface finish effects when compared to the penalty factors estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins, whereas the current ASME approach seems sufficient to cover significant environmental effects for representative loadings and surface finish conditions of reactor components.


Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

During mid 2006, ANL issued a NUREG/CR-6909 [2] report that is now applicable in The US for evaluations of PWR environmental effects in the fatigue analysis of new reactor components. In order to assess the conservativeness of the application of this NUREG report, low cycle fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in an air environment a fatigue behavior consistent with the ANL reference “air” mean curve. Tests were performed for two various loading conditions: for fully reverse triangular signal (for comparison purpose with tests performed by other laboratories with same loading conditions) and complex signal, simulating strain variation for actual typical PWR thermal transients. Two surface finish conditions were tested: polished and ground. The paper presents on one side the comparison of environmental penalty factors (Fen = Nair,RT/Nwater) as observed experimentally with the ANL formulation (considering the strain integral method for complex loading), and, on the other hand, the actual fatigue life of the specimen with the fatigue life predicted through the NUREG/CR-6909 application. Low Cycle Fatigue test results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates gives Fen penalty factors close to those estimated using the ANL formulation (NUREG report 6909). On the contrary, it was observed that constant amplitude LCF test results obtained under complex signal reproducing an actual sequence of a cold and hot thermal shock exhibits significantly lower environmental effects when compared to the Fen penalty factor estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 [2] in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins whereas the current ASME approach seems sufficient to cover significant environmental effect for components.


2013 ◽  
Vol 14 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Cun-jian Miao ◽  
Jin-yang Zheng ◽  
Xiao-zhe Gao ◽  
Ze Huang ◽  
A-bin Guo ◽  
...  

2010 ◽  
Vol 12 (10) ◽  
pp. 1041-1046 ◽  
Author(s):  
Angeline Poulon ◽  
Stéphanie Brochet ◽  
Jean-Christophe Glez ◽  
Jean-Denis Mithieux ◽  
Jean-Bernard Vogt

Author(s):  
Ikram Abarkan ◽  
Rabee Shamass ◽  
Zineb Achegaf ◽  
Abdellatif Khamlichi

Abstract Mechanical components are frequently subjected to severe cyclic pressure and/or temperature loadings. Therefore, numerical and analytical low cycle fatigue methods become widely used in the field of engineering to estimate the design fatigue lives. The primary aim of this work is to evaluate the accuracy of the most commonly used numerical and analytical low cycle fatigue life methods for specimens made of 316 LN austenitic stainless steel and subjected to fully reversed uniaxial tension-compression loading, in the room temperature condition. It was found that both Maximum shear strain and Brown-Miller criterions result in a very conservative estimation for uniaxially loaded specimens, however, Maximum shear strain criteria provides better results compared to the Brown-Miller criteria. The total strain energy density approach was also used, and both the Masing and non-Masing analysis were adopted in this study. It is found that the Masing model provides conservative fatigue lives, and non-Masing model results in a more realistic fatigue life prediction for 316 LN stainless steel for both low and high strain amplitude. The fatigue design curves obtained from the commonly used analytical low cycle fatigue equations were reexamined for 316 LN SS. The obtained design curves from Langer model and its modified versions are non-conservative for this type of material. Consequently, the authors suggest new optimized parameters to fit the given test data. The obtained curve using the currently suggested parameters is in better agreement with the experimental data for 316 LN SS.


Sign in / Sign up

Export Citation Format

Share Document