scholarly journals Benzoquinone-Hydroquinone Couple for Flow Battery

2013 ◽  
Vol 1491 ◽  
Author(s):  
Saraf Nawar ◽  
Brian Huskinson ◽  
Michael Aziz

ABSTRACTAt present, there is an ongoing search for approaches toward the storage of energy from intermittent renewable sources like wind and solar. Flow batteries have gained attention due to their potential viability for inexpensive storage of large amounts of energy. While the quinone/hydroquinone redox couple is a widely studied redox pair, its application in energy storage has not been widely explored. Because of its high reversibility, low toxicity, and low component costs, we propose the quinone/hydroquinone redox couple as a viable candidate for use in a grid-scale storage device. We have performed single-electrode tests on several quinone/hydroquinone redox couples, achieving current densities exceeding 500 mA/cm2, which is acceptable for use in energy applications. We fabricated a full cell using para-benzoquinone at the positive electrode against a commercial fuel cell hydrogen electrode separated by a Nafion membrane. We evaluated its performance in galvanic mode, where it reached current densities as high as 150 mA/cm2. The results from these studies indicate that the quinone/hydroquinone redox couple is a promising candidate for use in redox flow batteries.

2021 ◽  
Vol MA2021-02 (1) ◽  
pp. 101-101
Author(s):  
Vladimir Neburchilov ◽  
Ken Tsay ◽  
Khalid Fatih ◽  
Roberto Neagu ◽  
Erik Kjeang ◽  
...  

2020 ◽  
Vol 167 (2) ◽  
pp. 020551
Author(s):  
Hyun-seung Kim ◽  
Jeong Beom Lee ◽  
Ki Jae Kim ◽  
Ji Heon Ryu ◽  
Seung M. Oh

2019 ◽  
Vol 72 (9) ◽  
pp. 709 ◽  
Author(s):  
Abuzar Taheri ◽  
Douglas R. MacFarlane ◽  
Cristina Pozo-Gonzalo ◽  
Jennifer M. Pringle

The conversion of thermal energy to electricity using thermoelectrochemical cells (thermocells) is a developing approach to harvesting waste heat. The performance of a thermocell is highly dependent on the solvent used in the electrolyte, but the interplay of the various solvent effects is not yet well understood. Here, using the redox couples [Co(bpy)3][BF4]2/3 (bpy=2,2′-bipyridyl) and (Et4N)3/(NH4)4Fe(CN)6, which have been designed to allow dissolution in different solvent systems (aqueous, non-aqueous, and mixed solvent), the effect of solvent on the Seebeck coefficient (Se) and cell performance was studied. The highest Se for a cobalt-based redox couple measured thus far is reported. Different trends in the Seebeck coefficients of the two redox couples as a function of the ratio of organic solvent to water were observed. The cobalt redox couple produced a more positive Se in organic solvent than in water, whereas addition of water to organic solvent resulted in a more negative Se for Fe(CN)6 3−/4−. UV-vis and IR investigations of the redox couples indicate that Se is affected by changes in solvent–ligand interactions in the different solvent systems.


Sign in / Sign up

Export Citation Format

Share Document