Melting and Oxidation of Nanometer Size Aluminum Powders

2005 ◽  
Vol 896 ◽  
Author(s):  
Mikhaylo A Trunov ◽  
Swati Umbrakar ◽  
Mirko Schoenitz ◽  
Joseph T Mang ◽  
Edward L Dreizin

AbstractRecently, nanometer-sized aluminum powders became available commercially and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nano-sized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nano-sized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small angle x-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 °C in argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic step-wise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders.

MRS Advances ◽  
2020 ◽  
Vol 5 (29-30) ◽  
pp. 1623-1623
Author(s):  
Adriana Valério ◽  
Sérgio L. Morelhão ◽  
Alex J. Freitas Cabral ◽  
Márcio M. Soares ◽  
Cláudio M. R. Remédios

2015 ◽  
Vol 817 ◽  
pp. 634-638
Author(s):  
Xiao Yang Lu ◽  
Yu Lei Du ◽  
Chong Cui ◽  
Jian Ning Cai ◽  
Shi Zhong Du

In this work, Cu50Zr43Al7metallic glass powders were produced by gas atomization method. The structure and crystallization characteristics of the as-prepared powders with different particle size distributions were studied in detail. The amorphous state of the alloy powders was confirmed by X-ray diffraction (XRD), in which amorphous phase formed. The scanning election microscopy (SEM) result showed that the selected metallic glass powder performed excellent owned good spherical morphology, which was also observed on an optical microscope (OM). At the same time, the particle size distributions ranging from 20 μm to 200 μm of as-prepared metallic glass powders were determined by laser diffraction. Moreover, the crystallization behavior of the Cu50Zr43Al7metallic glass powders was investigated by differential scanning calorimetry (DSC).


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

Sign in / Sign up

Export Citation Format

Share Document