Fabrication of Hollow Silica Aerogel Spheres for Direct Drive Inertial Confinement Fusion (ICF) Experiments

2005 ◽  
Vol 901 ◽  
Author(s):  
Reny Richard Paguio ◽  
Abbas Nikroo ◽  
Jared F Hund ◽  
Christopher A. Frederick ◽  
Javier Jaquez ◽  
...  

AbstractHollow foam spheres are needed for laser fusion experiments on the OMEGA laser facility at the University of Rochester as part of the demonstration of the feasibility of inertial confinement fusion. Previously polymer based foam and aerogel shells have been produced using resorcinol-formaldehyde (R/F) and divinylbenzene (DVB). In this paper we discuss the development of silica aerogel (SAG) shells. SAG may have the increased robustness, which is important in processing these laser targets. SAG shells were fabricated by the microencapsulation method using a triple orifice droplet generator. This technique allows for precise control of the shell diameter and wall thickness. Reduction of the aerogel gelation time is crucial to fabrication of intact shells with high yield. In addition, the proper choice of the components of the different phases of the microencapsulation process is essential for fabrication of intact SAG shells with proper sphericity and wall uniformity. The density of shells fabricated is approximately 100 mg/cc and the diameter ranges from 700–2000 μm, with a wall thickness of 50–200 μm. Development of a full density permeation barrier for retention of the fusion fuel will also be discussed.

1991 ◽  
Vol 9 (1) ◽  
pp. 99-118 ◽  
Author(s):  
R. A. Lerche ◽  
D. Ress ◽  
R. J. Ellis ◽  
S. M. Lane ◽  
K. A. Nugent

A camera has been developed that directly measures the deuterium-tritium burn region of laser-driven inertial confinement fusion targets. Images are formed by 14-MeV thermonuclear neutrons emitted from the targets. Our demonstration instrument is based on a coded-aperture imaging technique known as penumbral imaging, and has produced images of high-yield (> 1012 neutrons) direct-drive targets with resolutions of 80 μm. The camera consists of four major components: the penumbral aperture, alignment hardware, detector system, and image analysis software.


1990 ◽  
Vol 8 (1-2) ◽  
pp. 3-17 ◽  
Author(s):  
C. Yamanaka

Inertial confinement fusion (ICF) has made great progress. In fact several significant scientific firsts have been achieved in the last year. These developments have presented the ICF community with an opportunity to embark on a new phase in ICF research. The key issues of laser fusion are to attain a high absorption of laser light in a plasma, to prevent preheating of fuel during the compression, and to achieve highly efficient implosion by uniform compression of fuel due to the homogeneous deposition of laser energy on the pellet surface. Direct drive and indirect drive have been investigated. The progress in both schemes is remarkable. The neutron yield by the stagnation free compression of the LHART target has attained 1013 which corresponds to a pellet gain of 1/500. The plastic shell target has reached a fuel density as large as 600 times the liquid density which is measured by the Si activation method as well as the D knockon method. A cryogenic foam target is now under investigation.


MRS Bulletin ◽  
1986 ◽  
Vol 11 (5) ◽  
pp. 26-29 ◽  
Author(s):  
J. H. Campbell

Abstract:The application of Inertial Confinement Fusion to power production requires the development of a high-yield fusion capsule. Theoretical design calculations suggest that a single shell capsule with a uniformly distributed deuterium-tritium (DT) fuel layer on the inside surface could give the desired high-gain performance when directly driven with 0.35 μm laser light. This design requires operation at cryogenic temperatures necessary to condense DT (20-30 K) and a means of levitating the fuel layer inside the capsule. On e recently suggested method for making this capsule is to use a rigid foam matrix to support the condensed DT in a spherical shell configuration. For such a capsule to be successfully fielded, a number of critical materials problems must be solved.


2003 ◽  
Vol 10 (5) ◽  
pp. 1906-1918 ◽  
Author(s):  
V. N. Goncharov ◽  
J. P. Knauer ◽  
P. W. McKenty ◽  
P. B. Radha ◽  
T. C. Sangster ◽  
...  

2001 ◽  
Vol 8 (5) ◽  
pp. 2257-2267 ◽  
Author(s):  
Michael E. Cuneo ◽  
Roger A. Vesey ◽  
John L. Porter ◽  
Gordon A. Chandler ◽  
David L. Fehl ◽  
...  

2008 ◽  
Vol 100 (18) ◽  
Author(s):  
S. X. Hu ◽  
V. A. Smalyuk ◽  
V. N. Goncharov ◽  
J. P. Knauer ◽  
P. B. Radha ◽  
...  

2019 ◽  
Vol 14 (11) ◽  
pp. C11007-C11007
Author(s):  
Z. Chen ◽  
X. Zhang ◽  
F. Wang ◽  
J. Zheng ◽  
X. Wang ◽  
...  

2013 ◽  
Vol 19 (4) ◽  
pp. 1073-1079 ◽  
Author(s):  
Yongqiang Li ◽  
Xue Liu ◽  
Xinyi Li ◽  
Yiyang Liu ◽  
Yi Zheng ◽  
...  

AbstractQuality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh–Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.


Sign in / Sign up

Export Citation Format

Share Document