The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells

2009 ◽  
Vol 1165 ◽  
Author(s):  
Hironori Katagiri ◽  
Kazuo Jimbo ◽  
Masami Tahara ◽  
Hideaki Araki ◽  
Koichiro Oishi

AbstractCu2ZnSnS4 (CZTS) thin films were fabricated by using three RF co-sputtering continued with sulfurization method. The new type of thin film solar cells using CZTS as an absorber consists of buffer-layer and window-layer on CZTS films that were fabricated on a Mo-coated Soda Lime Glass (SLG) substrate. It was confirmed that CZTS solar cells with high conversion efficiency existed in a relatively narrow composition region. In this paper, the fabrication method of CZTS-based thin film solar cells in our laboratory was stated briefly and the influence of the composition ratio on the photovoltaic properties were presented. Furthermore, the properties of a genuine non-toxic solar cell using a Cd-free buffer-layer were introduced.

2006 ◽  
Vol 129 (3) ◽  
pp. 323-326
Author(s):  
Sachin S. Kulkarni ◽  
Jyoti S. Shirolikar ◽  
Neelkanth G. Dhere

Rapid thermal processing (RTP) provides a way to rapidly heat substrates to an elevated temperature to perform relatively short duration processes, typically less than 2–3min long. RTP can be utilized to minimize the process cycle time without compromising process uniformity, thus eliminating a bottleneck in CuIn1−xGaxSe2−ySy (CIGSS) module fabrication. Some approaches have been able to realize solar cells with conversion efficiencies close or equal to those for conventionally processed solar cells with similar device structures. A RTP reactor for preparation of CIGSS thin films on 10cm×10cm substrates has been designed, assembled, and tested at the Florida Solar Energy Center’s PV Materials Lab. This paper describes the synthesis and characterization of CIGSS thin-film solar cells by the RTP technique. Materials characterization of these films was done by scanning electron microscopy, x-ray energy dispersive spectroscopy, x-ray diffraction, Auger electron spectroscopy, electron probe microanalysis, and electrical characterization was done by current–voltage measurements on soda lime glass substrates by the RTP technique. Encouraging results were obtained during the first few experimental sets, demonstrating that reasonable solar cell efficiencies (up to 9%) can be achieved with relatively shorter cycle times, lower thermal budgets, and without using toxic gases.


RSC Advances ◽  
2014 ◽  
Vol 4 (18) ◽  
pp. 9118-9125 ◽  
Author(s):  
Si-Nae Park ◽  
Shi-Joon Sung ◽  
Dae-Ho Son ◽  
Dae-Hwan Kim ◽  
Mungunshagai Gansukh ◽  
...  

Effective adding/removal of organic chemicals to/from CZTS precursor thin films for preparing uniform CZTS thin films with optimal photovoltaic properties was achieved by pre-annealing of CZTS precursors containing thiourea.


2012 ◽  
Vol 182-183 ◽  
pp. 237-240
Author(s):  
Nian Jing Ji ◽  
Ke Gao Liu ◽  
Zhong Quan Ma

CZTS thin film, a potential candidate for application as absorber layer in thin film solar cells, has drawn much attention in these years due to its excellent photoelectric performance and nontoxic components. It provides a brief description of the development of CZTS thin film for solar cells, and surveys several methods of depositing CZTS films, then introduces the crystal structure of CZTS which is a problem for composition ratio affecting the properties of CZTS thin films. Here we also outline the development and the structure of solar cells based on CZTS thin films.


2018 ◽  
Vol 9 ◽  
pp. 2700-2707 ◽  
Author(s):  
Nima Khoshsirat ◽  
Fawad Ali ◽  
Vincent Tiing Tiong ◽  
Mojtaba Amjadipour ◽  
Hongxia Wang ◽  
...  

Molybdenum (Mo) is the most commonly used material as back contact in thin-film solar cells. Adhesion of Mo film to soda–lime glass (SLG) substrate is crucial to the performance of solar cells. In this study, an optimized bilayer structure made of a thin layer of Mo on an ultra-thin chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate. DC magnetron sputtering is used for deposition of Mo and Cr films. The conductivity of Mo/Cr bilayer films, their microstructure and surface morphology are studied at different deposition powers and working pressures. Good adhesion to the SLG substrate has been achieved by means of an ultra-thin Cr layer under the Mo layer. By optimizing the deposition conditions we achieved low surface roughness, high optical reflectance and low sheet resistivity while we could decrease the back contact thickness to 600 nm. That is two thirds to half of the thickness that is currently being used for bilayer and single layer back contact for thin-film solar cells. We demonstrate the excellent properties of Mo/Cr bilayer as back contact of a CZTS solar cell.


Solar Energy ◽  
2006 ◽  
Author(s):  
Sachin S. Kulkarni ◽  
Jyoti S. Shirolikar ◽  
Neelkanth G. Dhere

Rapid thermal processing (RTP) provides a way to rapidly heat substrates to an elevated temperature to perform relatively short duration processes, typically less than 2–3 minutes long. RTP can be utilized to minimize the process cycle time without compromising process uniformity, thus eliminating a bottleneck in CuIn1-xGaxSe2-ySy (CIGSS) module fabrication. Some approaches have been able to realize solar cells with conversion efficiencies close or equal to those for conventionally processed solar cells with similar device structures. Florida Solar Energy Center (FSEC) PV Materials Lab has developed excellent facilities for the preparation of CIGSS thin-film solar cells. A RTP reactor for preparation of CIGSS thin films on 10 cm × 10 cm substrates has been designed, assembled and tested at the FSEC PV Materials Lab. This paper describes the synthesis and characterization of CIGSS thin-film solar cells by RTP technique. Materials characterization of these films was done by SEM, XEDS, XRD, AES, EPMA and electrical characterization was done by current-voltage measurements on soda lime glass substrates by RTP technique. Encouraging results were obtained during the first few experimental sets, demonstrating that reasonable solar cell efficiencies (up to 9%) can be achieved with relatively shorter cycle times, lower thermal budgets and without using toxic gases.


Sign in / Sign up

Export Citation Format

Share Document