back contact
Recently Published Documents


TOTAL DOCUMENTS

1017
(FIVE YEARS 224)

H-INDEX

46
(FIVE YEARS 7)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Yung-Lin Chen ◽  
Yi-Cheng Lin ◽  
Wan-Yu Wu

It has always been a huge challenge to prepare the Mo back contact of inorganic compound thin film solar cells (e.g., CIGS, CZTS, Sb2Se3) with good conductivity and adhesion at the same time. High-power impulse magnetron sputtering (HiPIMS) has been proposed as one solution to improve the properties of the thin film. In this study, the HiPIMS technology replaced the traditional DC power sputtering technology to deposit Mo back contact on polyimide (PI) substrates by adjusting the experimental parameters of HiPIMS, including working pressure and pulse DC bias. When the Mo back contact is prepared under a working pressure of 5 mTorr and bias voltage of −20 V, the conductivity of the Mo back contact is 9.9 × 10−6 Ωcm, the residual stress of 720 MPa, and the film still has good adhesion. Under the minimum radius of curvature of 10 mm, the resistivity change rate of Mo back contact does not increase by more than 15% regardless of the 1680 h or 1500 bending cycle tests, and the Mo film still has good adhesion in appearance. Experimental results show that, compared with traditional DC sputtering, HiPIMS coating technology has better conductivity and adhesion at the same time, and is especially suitable for PI substrates.


2022 ◽  
Author(s):  
MD MAHFUZUR RAHMAN

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with 87.68% fill factor rate making it very thin, flexible and resilient providing diverse operational capabilities.


2022 ◽  
Author(s):  
MD MAHFUZUR RAHMAN

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with 87.68% fill factor rate making it very thin, flexible and resilient providing diverse operational capabilities.


Solar Energy ◽  
2022 ◽  
Vol 231 ◽  
pp. 203-208
Author(s):  
Wenjie Wang ◽  
Jian He ◽  
Di Yan ◽  
Wenhao Chen ◽  
Sieu Pheng Phang ◽  
...  

2022 ◽  
Vol 235 ◽  
pp. 111466
Author(s):  
Jikui Ma ◽  
Yuhang Song ◽  
Shuang Qiao ◽  
Dawei Liu ◽  
Zhenjun Ding ◽  
...  

2022 ◽  
Vol 234 ◽  
pp. 111426
Author(s):  
Erik O. Shalenov ◽  
Yeldos S. Seitkozhanov ◽  
Constantinos Valagiannopoulos ◽  
Annie Ng ◽  
Karlygash N. Dzhumagulova ◽  
...  

Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 832-842
Author(s):  
Biao Zhou ◽  
Fan Zhang ◽  
Junlin Zhang ◽  
Xiutao Yang ◽  
Kelin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document