Actinide Science with a Soft X-ray Scanning Transmission X-ray Microscope (STXM)

2010 ◽  
Vol 1264 ◽  
Author(s):  
Per-Anders Glans ◽  
Geza Szigethy ◽  
Dustin Demoin ◽  
Tolek Tyliszczak ◽  
Jide Xu ◽  
...  

AbstractSoft x-ray scanning transmission x-ray microscope (STXM) spectromicroscopy has been developed and employed to investigate several aspects of actinide chemistry and materials science at the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 STXM end station. The basic approach and fundamentals of STXM experiments for radioactive materials systems is discussed. Representative results from STXM spectromicroscopy investigations of a mixed phase uranium nitride, single crystals of Eu(III)[TREN(Me-3,2-HOPO)]3 2H2O and hydrated Pu2(III)(C2O4)3(6H2O) 3H2O complexes are presented. The STXM images and soft x-ray absorption spectra illustrate the capabilities and utility of soft x-ray STXM for providing information about actinide materials, especially the light element constituents. Lastly, new and future opportunities for actinide science utilizing soft x-ray STXM are discussed in light of the planned upgrades for the STXM end stations at the ALS.

2008 ◽  
Vol 1104 ◽  
Author(s):  
David Shuh ◽  
Roy Copping ◽  
Tolek Tyliszczak ◽  
Ingrid Castro-Rodriguez ◽  
David K. Shuh

AbstractThe fundamental characterization and understanding of 5f electron behavior in actinide complexes is imperative to provide an enhanced basis for the rational and accelerated development of improved processes relevant to nuclear energy. Soft x-ray absorption spectroscopy utilizing the scanning transmission x-ray microscope (STXM) at the Advanced Light Source-Molecular Environmental Science (ALS-MES) Beamline 11.0.2 has been used to probe the electronic characteristics of a nitrogen donor ligand 2,6-Bis(2-benzimidazyl)pyridine (BBP) and its resulting U(IV) complex. The nitrogen K- and carbon K-edges have been collected from both ligand and uranium complex, as well as the uranium 4d-edge from the complex. Upon complexation, the light element absorption spectra change markedly and the uranium spectra from the complex is compared to the reference spectrum obtained from U(IV)Cl4. The evolution of the spectral features are described and interpreted within a simple conceptual framework. Based on spectral evidence alone, the uranium is bound through the pyridine-like nitrogens and the oxidation state of the uranium is consistent with a U(IV) species.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


2005 ◽  
Vol 71 (3) ◽  
pp. 1300-1310 ◽  
Author(s):  
Brandy Toner ◽  
Sirine Fakra ◽  
Mario Villalobos ◽  
Tony Warwick ◽  
Garrison Sposito

ABSTRACT Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2 (aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2 (aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.


2018 ◽  
Author(s):  
Amy L. Bondy ◽  
Daniel Bonanno ◽  
Ryan C. Moffet ◽  
Bingbing Wang ◽  
Alexander Laskin ◽  
...  

Abstract. Aerosols in the atmosphere are chemically complex with thousands or more chemical species distributed in different proportions across individual particles in an aerosol population. An internal mixing assumption, with species present in the same proportions across all aerosols, is used in many models and calculations of secondary organic aerosol (SOA) formation, cloud activation, and aerosol optical properties. However, many of these effects depend on the distribution of species within individual particles, and important information can be lost when internal mixtures are assumed. Herein, we show that during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, Alabama, at a rural, forested location, that aerosols frequently are not purely internally mixed, even in the accumulation mode (0.2–1.0 µm). A range of aerosol sources and mixing states were obtained using computer controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) and scanning transmission X-ray microscopy-near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS). Particles that were dominated by SOA and inorganic salts were the majority of particles by number fraction from 0.2–5 microns with an average of 78 % SOA in the accumulation mode. However, during certain periods contributions by sea spray aerosol (SSA) and mineral dust were significant to accumulation (22 % SSA and 26 % dust) and coarse mode number concentrations (38 % SSA and 63 % dust). The fraction of particles containing key elements (Na, Mg, K, Ca, and Fe) were determined as a function of size for specific classes of particles. Within internally mixed SOA/sulfate particles


Author(s):  
V. Briois ◽  
Ch. Giorgetti ◽  
F. Baudelet ◽  
A. M. Flank ◽  
M. S. Tokumoto ◽  
...  

2005 ◽  
Vol 58 (6) ◽  
pp. 423 ◽  
Author(s):  
Adam P. Hitchcock ◽  
Harald D. H. Stöver ◽  
Lisa M. Croll ◽  
Ronald F. Childs

Recently, synchrotron-based soft X-ray spectromicroscopy techniques have been applied to studies of polymer microstructure at the ~50 nm spatial scale. Functional group based chemical speciation and quantitative mapping is provided by near edge X-ray absorption fine structure spectral (NEXAFS) contrast. The techniques, sample data, and analysis methods of scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron microscopy (X-PEEM) are outlined. The capabilities of STXM are illustrated by results from recent studies of (a) controlled release microcapsules and microspheres, (b) microcapsules being developed for gene therapy applications, (c) conducting polymer films studied in the presence of electrolyte and under potential control, and (d) studies of protein interactions with patterned polymer surfaces. In the latter area, the capabilities of STXM and X-PEEM are compared directly.


2014 ◽  
Vol 171 ◽  
pp. 357-371 ◽  
Author(s):  
Rachel Mak ◽  
Mirna Lerotic ◽  
Holger Fleckenstein ◽  
Stefan Vogt ◽  
Stefan M. Wild ◽  
...  

X-Ray absorption spectromicroscopy provides rich information on the chemical organization of materials down to the nanoscale. However, interpretation of this information in studies of “natural” materials such as biological or environmental science specimens can be complicated by the complex mixtures of spectroscopically complicated materials present. We describe here the shortcomings that sometimes arise in previously-employed approaches such as cluster analysis, and we present a new approach based on non-negative matrix approximation (NNMA) analysis with both sparseness and cluster-similarity regularizations. In a preliminary study of the large-scale biochemical organization of human spermatozoa, NNMA analysis delivers results that nicely show the major features of spermatozoa with no physically erroneous negative weightings or thicknesses in the calculated image.


1997 ◽  
Vol 502 ◽  
Author(s):  
T. Ressler ◽  
Joe Wong ◽  
W. Metz

ABSTRACTIn addition to being an established technique for ex-situ structural studies, x-ray absorption spectroscopy (XAS) has recently been realized to be a powerful tool for in-situ time-resolved investigations in materials science. This paper describes two complementary techniques: quick-scanning EXAFS (QEXAFS) and energy-dispersive XAS (DXAS) which offer time resolution in the seconds and milliseconds range, respectively. Formation of a heterogeneous catalyst from a solid-state reaction of a precursor is presented as an example of a time-resolved XAS application.


Sign in / Sign up

Export Citation Format

Share Document