cloud activation
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 143 (40) ◽  
pp. 16653-16662
Author(s):  
Aleia Bellcross ◽  
Ariana Gray Bé ◽  
Franz M. Geiger ◽  
Regan J. Thomson

2021 ◽  
Vol 21 (14) ◽  
pp. 11289-11302
Author(s):  
Imre Salma ◽  
Wanda Thén ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi

Abstract. Collocated measurements using a condensation particle counter, differential mobility particle sizer and cloud condensation nuclei counter were realised in parallel in central Budapest from 15 April 2019 to 14 April 2020 to gain insight into the cloud activation properties of urban aerosol particles. The median total particle number concentration was 10.1 × 103 cm−3. The median concentrations of cloud condensation nuclei (CCN) at water vapour supersaturation (S) values of 0.1 %, 0.2 %, 0.3 %, 0.5 % and 1.0 % were 0.59, 1.09, 1.39, 1.80 and 2.5 × 103 cm−3, respectively. The CCN concentrations represented 7–27 % of all particles. The CCN concentrations were considerably larger but the activation fractions were systematically substantially smaller than observed in regional or remote locations. The effective critical dry particle diameters (dc,eff) were derived utilising the CCN concentrations and particle number size distributions. Their median values at the five supersaturation values considered were 207, 149, 126, 105 and 80 nm, respectively; all of these diameters were positioned within the accumulation mode of the typical particle number size distribution. Their frequency distributions revealed a single peak for which the geometric standard deviation increased monotonically with S. This broadening indicated high time variability in the activating properties of smaller particles. The frequency distributions also showed fine structure, with several compositional elements that seemed to reveal a consistent or monotonical tendency with S. The relationships between the critical S and dc,eff suggest that urban aerosol particles in Budapest with diameters larger than approximately 130 nm showed similar hydroscopicity to corresponding continental aerosol particles, whereas smaller particles in Budapest were less hygroscopic than corresponding continental aerosol particles. Only modest seasonal cycling in CCN concentrations and activation fractions was seen, and only for large S values. This cycling likely reflects changes in the number concentration, chemical composition and mixing state of the particles. The seasonal dependencies of dc,eff were featureless, indicating that the droplet activation properties of the urban particles remained more or less the same throughout the year. This is again different from what is seen in non-urban locations. Hygroscopicity parameters (κ values) were computed without determining the time-dependent chemical composition of the particles. The median values for κ were 0.15, 0.10, 0.07, 0.04 and 0.02, respectively, at the five supersaturation values considered. The averages suggested that the larger particles were considerably more hygroscopic than the smaller particles. We found that the κ values for the urban aerosol were substantially smaller than those previously reported for aerosols in regional or remote locations. All of these characteristics can be linked to the specific source composition of particles in cities. The relatively large variability in the hygroscopicity parameters for a given S emphasises that the individual values represent the CCN population in ambient air while the average hygroscopicity parameter mainly corresponds to particles with sizes close to the effective critical dry particle diameter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernadette Rosati ◽  
Sigurd Christiansen ◽  
Anders Dinesen ◽  
Pontus Roldin ◽  
Andreas Massling ◽  
...  

AbstractSea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. In the atmosphere, SSA may exist as aqueous phase solution droplets or as dried solid or amorphous particles. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential of the dried particles of the same size. The results point towards surface reactions on the liquid aerosols that are more crucial for small particles and the formation of salt structures with water bound within the dried aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth factor of sub-micrometre SSA in the marine atmosphere compared to fresh laboratory generated NaCl or sea salt of the same dry size, which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for such a measured reduced hygroscopic growth factor and cloud activation potential.


2020 ◽  
Author(s):  
Bernadette Rosati ◽  
Sigurd Christiansen ◽  
Anders Dinesen ◽  
Pontus Roldin ◽  
Andreas Massling ◽  
...  

Abstract Sea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential. The results point towards surface reactions that are more crucial for small particles and the formation of salt structures with water bound within the aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth of sub-micrometre SSA in the marine atmosphere compared to pure NaCl which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for reduced hygroscopicity and cloud activation potential.


2020 ◽  
Vol 77 (9) ◽  
pp. 3249-3273
Author(s):  
Lianet Hernández Pardo ◽  
Hugh Morrison ◽  
Luiz A. T. Machado ◽  
Jerry Y. Harrington ◽  
Zachary J. Lebo

Abstract In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case.


2020 ◽  
Vol 239 ◽  
pp. 104905
Author(s):  
Chao Chen ◽  
Ogochukwu Y. Enekwizu ◽  
Xin Ma ◽  
Youling Jiang ◽  
Alexei F. Khalizov ◽  
...  

Author(s):  
E. F. Mikhailov ◽  
O. A. Ivanova ◽  
E. Yu. Nebosko ◽  
S. S. Vlasenko ◽  
T. I. Ryshkevich

Bioparticles represent a significant fraction of the total atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of micrometers (plant pollen, vegetation residues) and like other atmospheric aerosol particles, the degree of involvement of bioaerosols in atmospheric processes largely de- pends on their hygroscopic and cloud condensation nuclei properties. In this paper the ability of the pine, birch and rape subpollen particles to act as cloud condensation nuclei are considered. Submicron particles were obtained by aqueous extraction of biological material from pollen grains and subsequent solidification of the atomized liquid droplets. The parameters of cloud activation are determined in the size range of 20-270 nm in the range of water vapor supersaturations 0.1-1.1%. Based on experimental results, the hygroscopicity parameter, characterizing the effect of the chemical composition of the subparticles on their con- densation properties, is determined. The range of the hygroscopic parameter changes was 0.12-0.13. In general, the results of measurements showed that the condensation activity of the subpollen particles is comparable with the condensation activity of secondary organic aerosols and weakly depends on the type of the primary pollen.


2019 ◽  
Vol 12 (4) ◽  
pp. 1643-1677 ◽  
Author(s):  
Ina Tegen ◽  
David Neubauer ◽  
Sylvaine Ferrachat ◽  
Colombe Siegenthaler-Le Drian ◽  
Isabelle Bey ◽  
...  

Abstract. We introduce and evaluate aerosol simulations with the global aerosol–climate model ECHAM6.3–HAM2.3, which is the aerosol component of the fully coupled aerosol–chemistry–climate model ECHAM–HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free-running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between the model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse-mode aerosol concentrations to some extent so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM–HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol–climate interactions in a changing climate.


Sign in / Sign up

Export Citation Format

Share Document