energy dispersive spectrometer
Recently Published Documents


TOTAL DOCUMENTS

761
(FIVE YEARS 270)

H-INDEX

19
(FIVE YEARS 9)

Author(s):  
Zhuhuan Yu ◽  
Yawen Yan ◽  
Wei Gao ◽  
Xiaohui Wang ◽  
Xuliang Liu ◽  
...  

Abstract The AlxCoCrFeNi (molar radio, x=0.6 and 1.2) high entropy alloys (HEAs) were prepared by arc melting and directional solidification at the withdrawal rate of 150 μm/s. All microstructures were characterized by x-ray diffraction, optical microscopy and scanning electron microscopy with an energy-dispersive spectrometer. Strong similarities in phase constituent were observed between the as-cast samples and directionally solidified samples. The Al0.6CoCrFeNi HEA and Al1.2CoCrFeNi HEA fabricated by two different techniques respectively consisted of Cr-Fe-Co enriched FCC phase + Al-Ni enriched BCC phase and Al-Ni enriched B2 phase + Cr-Fe-Co enriched A2 phase. It was micromorphology found that directional solidification could not only make the microstructures arranged regularly but also coarsen the grains. This has been attributed to the preferred grain orientation and lower cooling rate during directional solidification process. Compression testing showed that the compressive ductility of directionally solidified samples decreased obviously. The ultimate compressive strength of Al0.6CoCrFeNi HEA increased from 1 675 MPa to 1 903 MPa, but the strength of Al1.2CoCrFeNi HEA decreased from 2 183 MPa to 1 463 MPa. The difference in strength has been suggested to be the result of micropores in the matrix.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Jie Wu ◽  
Songbai Xue ◽  
Qingcheng Luo

The flame brazing of H62 brass using a novel, low-silver Cu-P brazing filler metal was investigated in this study. The effect of the addition of a trace amount of Sn on the microstructure and properties of Cu-7P-1Ag filler metals was analyzed by means of X-ray diffractometer, scanning electron microscopy and energy dispersive spectrometer. The addition of trace Sn led to a decrease in the solidus and liquidus temperatures of Cu-7P-1Ag filler metals. Meanwhile, the spreading performance of the filler metals on a H62 brass substrate was improved. The microstructure of the low-silver, Cu-P brazing filler metal was mainly composed of α-Ag solid solution, α-Cu solid solution and Cu3P; an increase of Sn content led to the transformation of the microstructure of the joints from a block to a lamellar structure. When the Sn content was 0.5 wt. %, the shear strength of the joint at room temperature reached 348 MPa, and the fracture morphologies changed from a cleavage to a quasi-cleavage structure.


2022 ◽  
Author(s):  
Yong Li ◽  
Zhou Jiang ◽  
Haidong Yu ◽  
Xuebin Zhou ◽  
Peng Yi

Abstract Rare earth-modified graphene oxide (RE-M-GO) materials were successfully prepared by infiltration and heating modifier method. The morphology and phase structure of RE-M-GO were characterized by scanning electron microscopy(SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectrometer(EDS). The changes of the chemical structure were indicated by Fourier transform infrared (FTIR). X-ray photoelectron spectroscopy(XPS) was used to study the chemical state of the surface elements of graphene oxide which showed that the rare earth elements were added to the graphene oxide functional groups through the coordination reaction. Additionally, the findings concluded that the effect of modification by Ce is more obvious than La elements and the RE-M-GO materials prepared by the heating modifier method had better dispersibility than infiltration. With activating effect, the rare earth elements grafting to graphene oxide will contribute to its combination with other materials.


2022 ◽  
Vol 964 (1) ◽  
pp. 012029
Author(s):  
Nhung Thi-Tuyet Hoang ◽  
Anh Thi-Kim Tran

Abstract A pellet reactor (PR) was used to investigate the ability for zinc recovery from electroplating wastewater. The pellet reactor is a fluidized bed reactor, in which the nucleated precipitation of heavy metals occurred on the surface of seeding material. The zinc removal efficiency was 75% at molar ratio [CO3 2-]/[Zn2+] of 2.5, the flowrate of 16 L/h, sand’s diameter of 0.25 – 0.5 mm, and sand’s mass of 50 g. The elemental analysis of zinc carbonate and zinc hydroxide crystallization was analyzed by X-ray energy dispersive spectrometer (EDS) and the surface was characterised by Scanning electron microscope (SEM) to get the morphological observation of the pellets after 38-day operation. This study demonstrated that the fluidized bed reactor can be considered a feasible method for zinc removal efficiency from electroplating wastewater to achieve sustainable development.


2022 ◽  
Vol 119 (1) ◽  
pp. 106
Author(s):  
Mei Yang ◽  
Shuang Li ◽  
Xianju Zhang ◽  
Honglang Yang ◽  
Liping Nie ◽  
...  

Titanium alloy is an important metal material with excellent specific strength, which is widely used in aerospace field, nuclear industry, chemical medicine, and military industry. In order to investigate the connection conditions of TC4 titanium alloy and 316L stainless steel at different temperatures, the braze welding measurement with Ti57Zr13Cu21Ni9 filler metal was conducted in vacuum. The microstructure, morphology and phase of the joint were characterized by SEM (scanning electron microscope), EDS (Energy Dispersive Spectrometer) and XRD (X-ray diffraction), respectively. Microhardness and shear strength of the joint at room temperature and the bonding mechanism of TC4 and 316L were also investigated. The obtained results revealed that the main phases in the diffusion layer were Ti-based solid solution and Ti-Fe (TiFe and TiFe2) intermetallic compoundsands (IMCs) the center of the braze was mainly composed of Ti-Fe IMCs, (Ti, Zr)2(Ni, Cu), Ti-based solid solution. Additionally, the increase of brazing temperature firstly increased and then decreased the average shear strength with the maximum value of 133.9 MPa at 960 °C.


Ceramist ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 399-410
Author(s):  
Junghum Park ◽  
Hojae Lee ◽  
Yonghyun Lim ◽  
Jisung Yoon ◽  
Miju Ku ◽  
...  

The high temperature(900oC~) thermal sintering process is necessary to fabricate the Solid oxide fuel cells(SOFCs). However, the chemical reaction has occurred between solid oxide material components, electrode and electrolyte. In the case of lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ, LSCF) electrode, the SrZrO3(SZO) secondary phase is produced at the electrolyte interface even when using the gadolinium doped ceria(GDC) buffer layer for blocking the strontium and zirconium diffusion. The SZO layer hinders the oxygen ion transfer and deteriorates fuel cell performance. By using a novel flash light sintering(FLS) method, we have successfully solved the problem of secondary phase formation in the conventional high temperature thermal sintering process. The microstructure and thickness of the LSCF electrode are analyzed using a field emission scanning electron microscope(FE-SEM). The strontium diffusion and secondary phase are confirmed by X-ray diffraction (XRD), energy dispersive spectrometer method of SEM, TEM (SEM-, TEM-EDS). The NiO-YSZ anode supported LSCF cathode cells are adopted for electro chemical analysis which is measured at 750oC. The maximum power density of the thermal sintered LSCF cathode at 1050oC is 699.6mW/cm2, while that of the flash light sintered LSCF cathode is 711.6mW/cm2. This result proves that the electrode was successfully sintered without a secondary phase using flash light sintering.


Author(s):  
Shuli Zhang ◽  
Decheng Wang ◽  
Peng Cheng ◽  
Chenxi Shao

The present work aimed at understanding the wear mechanism of spring coil forming die and the effects of die geometry on wear. The wear morphology was analyzed by scanning electron microscopy and energy dispersive spectrometer. The main wear mechanism was found to be adhesive wear, and a variant of the Archard wear model was established. The wear distribution in spring coil forming die was numerically analyzed in DEFORM software, and the effects of die geometry parameters on wear were discussed. Numerical results revealed that the wear distribution in the die was uneven and the wear mainly occurred at the sides of the die cavity. The wear depth was greatly affected by the width and angle of the die cavity, whereas the length of the die cavity had little effect. A small cavity width or angle led to severe wear, while a large cavity width reduced the forming quality of the spring coil. Moreover, a simple and effective life prediction method was proposed based on wear results. The findings of this research will be helpful for the effective design of spring coil forming die and the prediction of wear.


Author(s):  
Александра Ивановна Иванова ◽  
Александр Дмитриевич Зигерт ◽  
Сергей Андреевич Третьяков ◽  
Елена Михайловна Семенова ◽  
Эльвина Тимербулатовна Дильмиева ◽  
...  

В работе представлены результаты исследований микро- и наноструктуры поверхности быстрозакаленных лент сплавов Гейслера (NiMnAl,NiMn AlSi, NiCoMn Al) методами сканирующей электронной и атомно-силовой микроскопии. Рассмотрено влияние химического состава на размер, геометрию границ и структуру зерен. Показано, что все исследуемые образцы обладают наноразмерным мартенситным рельефом, определены его параметры. Установлено, что поперечное сечение лент представлено кристаллическими зернами разной формы и размера, что обусловлено отличием скоростей охлаждения по краям и в центре ленты. Проведено элементное картирование поверхности поперечного сечения лент с помощью рентгеновского энергодисперсионного спектрометра, установлено равномерное распределение химических элементов в образцах. Показано, что легирование лент состава NiMnAl кобальтом вызывает изменение микроморфологии поверхности и оказывает значительное влияние на ход полевых зависимостей намагниченности и доменную структуру образцов. The paper describes the results of the scanning electronic and atomic force microscopy research of the surface structure of the NiMn Al, NiMn AlSi, NiCoMnAl rapidly quenched ribbons. The influence of the chemical composition on the size, boundary geometry and structure of the grains is considered. It is shown that all the test samples have a nano-sized martensitic relief, and its parameters are determined. It has been established that the cross section of the ribbon is represented by crystalline grains of different shapes which are due to differences in the cooling rates along the edges and in the center of the samples. Elemental mapping of the cross-sectional surface of the ribbons was carried out using an X-ray energy dispersive spectrometer, and a uniform distribution of chemical elements in the samples was established. It is shown that the cobalt doping of NiMn Al ribbon causes changes in the micromorphology of the surface and has a significant effect on the magnetic properties of rapidly quenched ribbons: field dependences of themagnetization and domain structure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyi Sui ◽  
Lichao Li ◽  
Bin Lin ◽  
Yuhang Zhang ◽  
Benyang Zhang ◽  
...  

Ceramics can achieve superlubricity under water lubrication; however, their running-in period is long and application is rather limited by wear limit. Thus, zeolite imidazole ester skeleton (ZIF), an important branch of metal organic framework materials (MOFs), is expected to improve the tribological properties of lubricants and associated additives. As such, it has broad application prospects within the field. In this paper, ZIF-8 nanoparticles of varying concentrations were prepared and linked with amino functional groups. Specimens were used in silicon nitride self-matching pairs and their tribological properties were observed. After the experiment, friction surfaces were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared radiation (FTIR). The experimental results have shown that ZIF-8 nanoparticles greatly reduced both friction and wear. Comprehensively considering running-in time, average COF during the whole process and smooth friction period COF, optimal performance was obtained for the ZIF-8 nanoparticle solution concentration of 1wt%. Furthermore, it was concluded that the lubrication properties of amino-modified ZIF-8 nanoparticles are significantly better compared to that of the unmodified ZIF-8. The anti-friction mechanism of ZIF-8 as a ceramic water lubrication additive was mainly through the filling and forming of nanoparticle film on the ceramic surface.


2021 ◽  
pp. 1-28
Author(s):  
Surong Luo ◽  
Zhen Wang ◽  
Qingnan Gong ◽  
Dehui Wang

To clarify the role of temperature in the thaumasite formation of cement mortar under magnesium sulfate solution at two different temperature, the corrosion products and microstructure of cement-based materials with different amounts and particle sizes of limestone powder (LP) were quantitatively analyzed by Fourier Transform Infra-Red (FTIR), thermogravimetric analysis (TGA), X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). At 5oC, the main corrosion product of cement mortar was gypsum and thaumasite. At 20°C, the main corrosion products of cement mortar were gypsum and ettringite. When the temperature increased from 5°C to 20°C, the contents of ettringite, thaumasite and gypsum changed from 0.3%, 12.3% and 64.6% to 4.6%, 0% and 57.0%, respectively. The formation of thaumasite was the combination of direct reaction with ettringite transformation. The incorporation of LP accelerated the corrosion of mortars, and the change coefficient of compressive strength of mortars decreased from 100% to 47.3% when its content increased from 0% to 30%. Low temperature and incorporation of finer limestone powder enhanced the corrosion of magnesium sulfate solution.


Sign in / Sign up

Export Citation Format

Share Document