A Unified Approach to Grain Boundary Diffusion and Nucleation in Thin Film Reactions

1994 ◽  
Vol 343 ◽  
Author(s):  
K. R. Coffey ◽  
K. Barmak

ABSTRACTAn alternative model is proposed to extend the conventional view of diffusion under a concentration gradient in a grain boundary phase of width δ. The conventional model is well developed and readily applied to the thickening kinetics of polycrystalline product phases in binary diffusion couples, however it is not readily extended to other phenomena of interest in thin films, i.e., the nucleation and growth of the product phase crystallites prior to formation of a product phase layer. In the alternative model presented here, non-equilibrium thermodynamics is used to define the chemical potentials, μi, for each atomic specie in the grain and interphase boundaries of a polycrystalline diffusion couple. The chemical potential difference for each specie between the bulk phases of the diffusion couple is partitioned between the driving force for grain boundary diffusion and that for interfacial reaction. This partition leads to a characteristic decay length that describes the spatial variation of μi. Numerical calculations of μi are used to show that boundary diffusion favors heterogeneous nucleation. Product nucleation in thin film reactions is seen to be similar to precipitation from a bulk solid solution.

2021 ◽  
Vol 96 (5) ◽  
pp. 055706
Author(s):  
Songyou Lian ◽  
Congkang Xu ◽  
Jiangyong Wang ◽  
Hendrik C Swart ◽  
Jacobus J Terblans

1983 ◽  
Vol 25 ◽  
Author(s):  
E. C. Zingu ◽  
J. W. Mayer

ABSTRACTInterdiffusion in the Si<100>/Pd2Si/Ni and Si<111>/Pd2Si/Ni thin film systems has been investigated using Rutherford backscattering spectrometry. Nickel is found to diffuse along the grain boundaries of polycrystalline Pd2Si upon which it accumulates at the Si<100>Pd2Si interface. The high mobility of Ni compared to that of si suggests that Pd diffuses faster than Si along the Pd2Si grain boundaries. An activation energy of 1.2 eV is determined for Ni grain boundary diffusion in Pd2Si.


Sign in / Sign up

Export Citation Format

Share Document