auger electron
Recently Published Documents


TOTAL DOCUMENTS

3815
(FIVE YEARS 97)

H-INDEX

90
(FIVE YEARS 4)

2022 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
Alessio Zanza ◽  
Marco Seracchiani ◽  
Rodolfo Reda ◽  
Gabriele Miccoli ◽  
Luca Testarelli ◽  
...  

Since there are no reviews of the literature on this theme, the aim of this narrative review is to summarize the metallurgical tests used in endodontics, pointing out their functional use and their pros and cons and giving readers a user-friendly guide to serve as an orientation aid in the plethora of metallurgical tests. With this purpose, a literature search for articles published between January 2001 and December 2021 was conducted, using the electronic database PubMed to collect all published articles regarding the metallurgical tests used in endodontics for the evaluation of NiTi rotary instruments. The search was conducted using the following keywords: “metallurgy”, “differential scanning calorimetry” (DSC), “X-ray diffraction” (XRD), “atomic force microscopy” (AFM), “energy-dispersive X-ray spectroscopy” (EDS), “focused ion beam analysis” (FIB) and “Auger electron spectroscopy” (AES) combined with the term “endodontics” or “NiTi rotary instruments”. Considering the inclusion and exclusion criteria, of the 248 articles found, only 81 were included in the narrative review. According to the results, more than 50% of the selected articles were published in one of the two most relevant journals in endodontics: International Endodontic Journal (22.2%) and Journal of Endodontics (29.6%). The most popular metallurgical test was DSC, with 43 related articles, followed by EDS (33 articles), AFM (22 articles) and XRD (21 articles). Few studies were conducted using other tests such as FIB (2 articles), micro-Raman spectroscopy (4 articles), metallographic analysis (7 articles) and Auger electron spectroscopy (2 articles).


Author(s):  
Ruaridh Forbes ◽  
Paul Hockett ◽  
Ivan Powis ◽  
John D. Bozek ◽  
Stephen T. Pratt ◽  
...  

Electron spectroscopy following Xe 3d and F 1s ionization in XeF2 elucidates the influence of core electrons on molecular bonding.


Author(s):  
Е.В. Рутьков ◽  
Е.Ю. Афанасьева ◽  
Н.Р. Галль

Be adsorption and T = 900 - 1100 K results in formation of a stable adsorption state; it drops the activation energy of atomic Be dissolution in the substrate bulk, and all newly deposited Be dissolves in the substrate. The absolute concentration of atomic Be has been measured by Auger electron spectroscopy using specially designed ultra high vacuum getter Be source. The concentration is (1 ± 0.1)•1015 сm-2 , and corresponds to WBe stoichiometry relative to W surface concentration. The layer is destroyed at T > 1100 K, the atomic Be dissolves in the bulk with the activation energy ~ 3,5 eV.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna M. Osytek ◽  
Philip J. Blower ◽  
Ines M. Costa ◽  
Gareth E. Smith ◽  
Vincenzo Abbate ◽  
...  

Abstract Background Auger electron-emitting radionuclides have potential in targeted treatment of small tumors. Thallium-201 (201Tl), a gamma-emitting radionuclide used in myocardial perfusion scintigraphy, decays by electron capture, releasing around 37 Auger and Coster–Kronig electrons per decay. However, its therapeutic and toxic effects in cancer cells remain largely unexplored. Here, we assess 201Tl in vitro kinetics, radiotoxicity and potential for targeted molecular radionuclide therapy, and aim to test the hypothesis that 201Tl is radiotoxic only when internalized. Methods Breast cancer MDA-MB-231 and prostate cancer DU145 cells were incubated with 200–8000 kBq/mL [201Tl]TlCl. Potassium concentration varied between 0 and 25 mM to modulate cellular uptake of 201Tl. Cell uptake and efflux rates of 201Tl were measured by gamma counting. Clonogenic assays were used to assess cell survival after 90 min incubation with 201Tl. Nuclear DNA damage was measured with γH2AX fluorescence imaging. Controls included untreated cells and cells treated with decayed [201Tl]TlCl. Results 201Tl uptake in both cell lines reached equilibrium within 90 min and washed out exponentially (t1/2 15 min) after the radioactive medium was exchanged for fresh medium. Cellular uptake of 201Tl in DU145 cells ranged between 1.6 (25 mM potassium) and 25.9% (0 mM potassium). Colony formation by both cell lines decreased significantly as 201Tl activity in cells increased, whereas 201Tl excluded from cells by use of high potassium buffer caused no significant toxicity. Non-radioactive TlCl at comparable concentrations caused no toxicity. An estimated average 201Tl intracellular activity of 0.29 Bq/cell (DU145 cells) and 0.18 Bq/cell (MDA-MB-231 cells) during 90 min exposure time caused 90% reduction in clonogenicity. 201Tl at these levels caused on average 3.5–4.6 times more DNA damage per nucleus than control treatments. Conclusions 201Tl reduces clonogenic survival and increases nuclear DNA damage only when internalized. These findings justify further development and evaluation of 201Tl therapeutic radiopharmaceuticals.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 980
Author(s):  
Malick Bio Idrissou ◽  
Alexandre Pichard ◽  
Bryan Tee ◽  
Tibor Kibedi ◽  
Sophie Poty ◽  
...  

Auger electron emitters (AEEs) are attractive tools in targeted radionuclide therapy to specifically irradiate tumour cells while sparing healthy tissues. However, because of their short range, AEEs need to be brought close to sensitive targets, particularly nuclear DNA, and to a lower extent, cell membrane. Therefore, radioimmunoconjugates (RIC) have been developed for specific tumour cell targeting and transportation to the nucleus. Herein, we assessed, in A-431CEA-luc and SK-OV-31B9 cancer cells that express low and high levels of HER2 receptors, two 111In-RIC consisting of the anti-HER2 antibody trastuzumab conjugated to NLS or TAT peptides for nuclear delivery. We found that NLS and TAT peptides improved the nuclear uptake of 111In-trastuzumab conjugates, but this effect was limited and non-specific. Moreover, it did not result in a drastic decrease of clonogenic survival. Indium-111 also contributed to non-specific cytotoxicity in vitro due to conversion electrons (30% of the cell killing). Comparison with [125I]I-UdR showed that the energy released in the cell nucleus by increasing the RIC’s nuclear uptake or by choosing an AEE that releases more energy per decay should be 5 to 10 times higher to observe a significant therapeutic effect. Therefore, new Auger-based radiopharmaceuticals need to be developed.


Author(s):  
Parvin Ahmadi ◽  
Mojtaba Shamsaei Zafar Ghandi ◽  
Aliasghar Shokri

Purpose: The biological effects of ionizing radiation at the cellular and subcellular scales are studied by the number of breaks in the DNA molecule that provides a quantitative description of the stochastic aspects of energy deposition at cellular scales. The Geant4 code represents a suitable theoretical toolkit in microdosimetry and nanodosimetry. In this study, radiation effects due to Auger electrons emitting radionuclides such as 195mPt 113mIn, 125I and 201Tl are investigated using the Geant4-DNA. Materials and Methods: The Geant4-DNA is the first Open-access software for the simulation of ionizing radiation and biological damage at the DNA scale. Low-energy electrons, especially Auger electron from Auger electron emitting radionuclides during the slowing-down process, deposit their energy within a nanometer volume. Results: The average number of Single-Strand Breaks (SSB) and Double-Strand Breaks (DSB) of DNA as a function of energy and distance from the center of the DNA axis are shown. Conclusion: The highest DSBs yield has occurred at energies less than 1 keV, and  induces a higher DSBs yield.


Author(s):  
Kannan M. Krishnan

We review the structure of atoms to describe allowed intra-atomic electronic transitions following dipole selection rules. Inner shell ionization is followed by characteristic X-ray emission or non-radiative de-excitation processes leading to Auger electrons that involve three atomic levels. Photon incidence also results in characteristic photoelectron emission, reflecting the energy distribution of the electrons in the solid. We present details of laboratory and synchrotron sources of X-rays, and discuss their detection by wavelength or energy-dispersive spectrometers, as well as microanalysis with X-ray (XRF), or electron (EPMA) incidence. Characteristic X-ray intensities are quantified in terms of composition using corrections for atomic number (Z), absorption (A), and fluorescence (F). Electron detectors use electrostatic or magnetic dispersing fields; two common designs are electrostatic hemispheric or mirror analyzers. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), used for surface analysis, require ultra-high vacuum. AES is a weak signal, best resolved in a derivative spectrum, shows sensitivity to the chemical state and the atomic environment, provides a spatially-resolved signal for composition mapping, and can be quantified for chemical analysis using sensitivity factors. Finally, we introduce the basics of XPS, a photon-in, electron-out technique, discussed further in §3.


Sign in / Sign up

Export Citation Format

Share Document