Preparation of PbZrxTi1−xO3 Thin Films by KrF Excimer Laser Ablation Technique

1996 ◽  
Vol 433 ◽  
Author(s):  
Hiromitsu Kurogi ◽  
Yukihiko Yamagata ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara ◽  
Bok Yin Tong

AbstractPb(ZrxTi1−x)O3(PZT) thin films have excellent ferroelectric, optical, piezoelectric and pyroelectric properties. We prepared PZT thin films using the excimer laser ablation technique. A pulsed KrF excimer laser was used to ablate PZT bulk targets. We have studied optimum preparation conditions such as an oxygen pressure, a laser energy fluence and a substrate temperature.In this paper, we investigated the composition, crystallization and ferroelectric properties of the PZT films prepared under various deposition conditions.The X-ray diffraction (XRD) patterns showed that the PZT films prepared on MgO(100) substrates at 600°C and with a laser fluence of 2J/cm2 had a perovskite - pyrochlore mixed structure. The condition of 100 mTorr oxygen pressure provided high quality perovskite films. It is found that the stoichiometric composition of the deposited films is obtained in ambient oxygen of 100˜400 mTorr. The ferroelectric properties of the Pt/PZT/Pt/MgO structure were studied. The capacitance-voltage characteristics and the corresponding hysteresis loop of the dielectric-electric field curve were discussed.We also studied optical emission of the PZT plasma plume to understand quantitative relation between the PZT film quality and the ablation plume plasma. We identified spectral lines originated in Pb, Pb+, Zr, Zr+, Ti, Ti+, PbO and TiO. These spectral intensities have remarkable dependence on the ambient O2 pressure.

1998 ◽  
Vol 526 ◽  
Author(s):  
Kenji Ebihara ◽  
Hiromnitsu Kurogi ◽  
Yukihiko Yamagata ◽  
Tomoaki Ikegami ◽  
Alexander M. Grishin

AbstractThe perovskite oxide YBa2Cu3O7-x (YBCO) and Pb(ZrxTi1-x)O3 (PZT) thin films have been deposited for superconducting-ferroelectric devices. KrF excimer laser ablation technique was used at the deposition conditions of 200-600mTorr O2, 2-3J/cm2 and 5-10 Hz operation frequency. Heterostructures of PZT-YBCO-YAlO3:Nd show the zero resistivity critical temperature of 82K and excellent ferroelectric properties of remnant polarization 32 μC/cm2, coercive force of 80kV/cm and dielectric constant 800. Cycling fatigue characteristics and leakage current are also discussed.


1991 ◽  
Vol 236 ◽  
Author(s):  
Gary A. Smith ◽  
Li-Chyong Chen ◽  
Mei-Chen Chuang

AbstractSystematic experiments have been carried out to characterize the yttria containing zirconia thin films on sapphire substrates by 248nm KrF excimer laser ablation. The deposition rate as a function of laser fluence and O2 pressure at room temperature was measured with a quartz crystal microbalance. The results show different threshold fluences for deposition in vacuum vs. oxygen. While the deposition rate increases with increasing fluence at a given oxygen pressure, the rate eventually saturates at a higher laser fluence. At a given fluence, the oxygen pressure dependence of the deposition rate shows a radical reduction when the O2 pressure increases from 10 mTorr to 1 Torr. Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy were used to obtain stoichiometric information. A very strong pressure dependence of the O/Zr ratio was observed. While the trend of increasing O/Zr and Zr/Y ratio with increasing O2 pressure is apparent, the correlations between O/Zr as well as Zr/Y ratio and other processing conditions are less obvious. RBS results indicate an increasing roughness at the interface between the ZrO2 film and the sapphire substrate as the oxygen pressure exceeds 50 mTorr. The structural information obtained from x-ray diffraction patterns indicates broadening of peak width with increasing laser fluence as well as decreasing substrate temperature. For the film deposited at a lower substrate temperature, a strong (002) texture was observed.


1991 ◽  
Vol 235 ◽  
Author(s):  
Gary A. Smith ◽  
Li-Chyong Chen ◽  
Mei-Chen Chuang

ABSTRACTSystematic experiments have been carried out to characterize the yttria containing zirconia thin films on sapphire substrates by 248nm KrF excimer laser ablation. The deposition rate as a function of laser fluence and O2 pressure at room temperature was measured with a quartz crystal microbalance. The results show different threshold fluences for deposition in vacuum vs. oxygen. While the deposition rate increases with increasing fluence at a given oxygen pressure, the rate eventually saturates at a higher laser fluence. At a given fluence, the oxygen pressure dependence of the deposition rate shows a radical reduction when the O2 pressure increases from 10 mTorr to 1 Torr. Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy were used to obtain stoichiometric information. A very strong pressure dependence of the O/Zr ratio was observed. While the trend of increasing O/Zr and Zr/Y ratio with increasing O2 pressure is apparent, the correlations between O/Zr as well as Zr/Y ratio and other processing conditions are less obvious. RBS results indicate an increasing roughness at the interface between the ZrO2 film and the sapphire substrate as the oxygen pressure exceeds 50 mTorr. The structural information obtained from x-ray diffraction patterns indicates broadening of peak width with increasing laser fluence as well as decreasing substrate temperature. For the film deposited at a lower substrate temperature, a strong (002) texture was observed.


1995 ◽  
Vol 86 (1-4) ◽  
pp. 175-179 ◽  
Author(s):  
F. Antoni ◽  
E. Fogarassy ◽  
C. Fuchs ◽  
B. Prévot ◽  
J.P. Stoquert

1995 ◽  
Vol 46 (1-3) ◽  
pp. 104-109 ◽  
Author(s):  
Jyrki Lappalainen ◽  
Johannes Frantti ◽  
Hannu Moilanen ◽  
Seppo Leppävuori

2000 ◽  
Vol 15 (2) ◽  
pp. 536-540 ◽  
Author(s):  
Y. F. Lu ◽  
Z. M. Ren ◽  
Z. H. Mai ◽  
T. C. Chong ◽  
S. C. Ng ◽  
...  

Thin films of polythiophene, a kind of polyheterocyclic compound with hydrogen function groups, were deposited by KrF excimer laser ablation of a compressed solid target in a vacuum chamber. The laser pulse fluence was approximately selected at 2 J/cm2 with a pulse duration of 25 ns. The structural, topographic, and electronic properties of the deposited thin films were analyzed by atomic force microscope, x-ray diffraction, and Raman and infrared spectroscopy measurements. Deposited thin films were observed to have good crystal properties and to be composed of crystalline cubes with a uniform size of 0.1 μm. The electronic structure of the deposited thin films should be different from the target materials, resulting from the laser irradiation effects. The influence of the deposition temperature on the structural and electronic properties of the deposited thin films was studied.


Sign in / Sign up

Export Citation Format

Share Document