Growth of Single-Walled Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition

2004 ◽  
Vol 858 ◽  
Author(s):  
Matthew R. Maschmann ◽  
Amit Goyal ◽  
Zafar Iqbal ◽  
Timothy S. Fisher ◽  
Roy Gat

ABSTRACTSingle-walled carbon nanotubes (SWCNTs) have been grown for the first time by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800°C using methane as the precursor and bimetallic Mo/Co catalyst supported on MgO dispersed on a silicon wafer. The nanotubes grown consist of bundles, each composed of individual tubes of a single diameter associated with either metallic or semiconducting SWCNTs, based on characterization by Raman spectroscopy. Field-emission scanning electron microscopy and atomic force microscopy show that the bundles are relatively thin – 5 to 10 nm in diameter – and up to a few micrometers in length. The results are compared with those obtained on recently reported SWCNTs grown by radio frequency PECVD.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tarek M. Abdel-Fattah ◽  
Phillip A. Williams ◽  
Russell A. Wincheski ◽  
Qamar A. Shams

Single-walled carbon nanotubes (SWNTs) have been synthesized via a novel chemical vapor deposition (CVD) approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO) method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.


Author(s):  
Matthew R. Maschmann ◽  
Placidus B. Amama ◽  
Timothy S. Fisher

The physical properties of carbon nanotubes (CNTs) make them outstanding candidates for introduction into technologies ranging from high resolution flat panel displays to nanoscale transistors. Integration of carbon nanotubes into devices, however, requires precise control over the manufacturing processes used during their synthesis. To meet the specific requirements of a given application, alignment, diameter, length and chirality of carbon nanotubes must be strictly addressed. This work demonstrates the controlled synthesis of single-walled carbon nanotubes (SWCNTs) with low amount of undesired carbonaceous species using plasma enhanced chemical vapor deposition (PECVD). This report elucidates the role of DC bias applied to the growth substrate during synthesis, including the field-enhanced alignment of SWCNTs, selectivity in the diameter distribution and selectivity of semiconducting versus metallic nanotubes. Carbon nanotubes are characterized using Raman spectroscopy and electron microscopy.


2008 ◽  
Vol 1 (1) ◽  
pp. 014001 ◽  
Author(s):  
Huaping Liu ◽  
Daisuke Takagi ◽  
Hiroshi Ohno ◽  
Shohei Chiashi ◽  
Tomohito Chokan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document