Electronically Stimulated Degradation of Crystalline Silicon Solar Cells

2005 ◽  
Vol 864 ◽  
Author(s):  
J. Schmidt ◽  
K. Bothe ◽  
D. Macdonald ◽  
J. Adey ◽  
R. Jones ◽  
...  

AbstractCarrier lifetime degradation in crystalline silicon solar cells under illumination with white light is a frequently observed phenomenon. Two main causes of such degradation effects have been identified in the past, both of them being electronically driven and both related to the most common acceptor element, boron, in silicon: (i) the dissociation of iron-boron pairs and (ii) the formation of recombination-active boron-oxygen complexes. While the first mechanism is particularly relevant in metal-contaminated solar-grade multicrystalline silicon materials, the latter process is important in monocrystalline Czochralski-grown silicon, rich in oxygen. This paper starts with a short review of the characteristic features of the two processes. We then briefly address the effect of iron-boron dissociation on solar cell parameters. Regarding the boron-oxygen-related degradation, the current status of the physical understanding of the defect formation process and the defect structure are presented. Finally, we discuss different strategies for effectively avoiding the degradation.

2006 ◽  
Vol 21 (1) ◽  
pp. 5-12 ◽  
Author(s):  
J. Schmidt ◽  
K. Bothe ◽  
D. Macdonald ◽  
J. Adey ◽  
R. Jones ◽  
...  

Carrier lifetime degradation in crystalline silicon solar cells under illumination with white light is a frequently observed phenomenon. Two main causes of such degradation effects have been identified in the past, both of them being electronically driven and both related to the most common acceptor element, boron, in silicon: (i) the dissociation of iron-boron pairs and (ii) the formation of recombination-active boron-oxygen complexes. While the first mechanism is particularly relevant in metal-contaminated solar-grade multicrystalline silicon materials, the latter process is important in monocrystalline Czochralski-grown silicon, rich in oxygen. This paper starts with a short review of the characteristic features of the two processes. We then briefly address the effect of iron-boron dissociation on solar cell parameters. Regarding the boron-oxygen-related degradation, the current status of the physical understanding of the defect formation process and the defect structure are presented. Finally, we discuss different strategies for effectively avoiding the degradation.


2020 ◽  
Vol 4 (9) ◽  
pp. 1900105
Author(s):  
Serra Altinoluk ◽  
Naveen Kumar ◽  
Emine Hande Ciftpinar ◽  
O. Demircioglu ◽  
Rasit Turan ◽  
...  

2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

2021 ◽  
pp. 2100015
Author(s):  
Jingxuan Kang ◽  
Xinbo Yang ◽  
Wenzhu Liu ◽  
Jiang Liu ◽  
Hang Xu ◽  
...  

Solar RRL ◽  
2021 ◽  
Author(s):  
Linkun Zhang ◽  
Lanxiang Meng ◽  
Lun Cai ◽  
Zhiming Chen ◽  
Wenjie Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document