scholarly journals Development of a method of increasing the interference immunity of frequency-hopping spread spectrum radio communication devices

2019 ◽  
Vol 2 (9 (98)) ◽  
pp. 74-84
Author(s):  
Oleksii Kuvshynov ◽  
Andrii Shyshatskyi ◽  
Olesia Zhuk ◽  
Robert Bieliakov ◽  
Yevgen Prokopenko ◽  
...  
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
A.A. Paramonov ◽  
◽  
Van Zung Hoang ◽  

Signals with frequency hopping spread spectrum (FHSS) have long been widely used in military radio communication systems (RCS) due to their frequency-energy characteristics. In such systems, the most important characteristic is noise immunity, i.e. the ability to ensure reliable transmission and reception of information under the influence of various types of organized intentional and unintentional interference. In this paper, we consider the case when the input of the receiver, in addition to the receiver's own noise, contains deliberate interference, which is considered noise interference. In this case, it is assumed that the interference covers only part of the operating frequencies of the radio communication system. The algorithm of optimal noncoherent signal reception with weight processing for making a decision about the transmitted symbol (bit) is in the focus of the paper. Static radio engineering methods, as well as Monte Carlo simulation, have been used to evaluate the noise immunity of receiving differential binary phase shift keying signals with FHSS when exposed to deliberate Partial-Band Interference. It is shown that the noise immunity of a radio communication system under conditions of destructive influence can be improved by using the intra-symbols FHSS mode with the proposed reception algorithm. With an increase in the signal-to-interference ratio, the noise immunity of information transmission increases significantly. The optimal strategy for dealing with Partial-Band Interference when the RCS is operating in the intra-symbols FHSS mode is to select the optimal multiplicity of symbol frequency diversity, which minimizes the probability of a bit error probability. The obtained dependencies are presented in order to compare and determine the effectiveness of the considered transmission mode with the proposed reception algorithm.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
A.A. Paramonov ◽  
◽  
Van Zung Hoang ◽  

The article deals with an algorithm for noncoherent reception of signals with Differential Quadrature Phase Shift Keying (DQPSK) using their weight processing for radio communication systems (RCS) with Frequency-hopping spread spectrum (FHSS) under Partial-band jamming noise (concentrated in the interference spectrum). Numerical calculations of bit/symbol error probability in the reception of DQPSK signals with a symbol-by-symbol frequency hopping are presented, as well as the results of modelling the considered reception algorithm for a radio communication system with an intra-symbol frequency hopping to study the noise immunity of receiving a DPQSK signal in the considered mode. It is shown that for not too large signal-to-jamming ratios when only a part of the operating frequencies is clogged by this noise, the noncoherent reception algorithm with weight processing provides higher noise immunity than the symbol-by-symbol frequency-hopping algorithm.


Author(s):  
Fawzan Galib Abdul Karim Bawahab ◽  
Elvan Yuniarti ◽  
Edi Kurniawan

Abstrak. Pada penelitian ini, telah dilakukan analisa karakterisasi pada teknologi Direct Sequence Spread Spectrum dan Frequency Hopping Spread Spectrum, sebagai salah satu teknik multiple-access pada sistem komunikasi. Karakterisasi dilakukan untuk mencari bagaimana cara meningkatkan keoptimalan kedua sistem tersebut, dalam mengatasi masalah interferensi dengan sistem dan channel yang sama. Dan juga untuk menentukan veriabel apa yang mempengaruhi keoptimalan kedua sistem tersebut. Karakterisasi dilakukan dengan menentukan variabel-variabel yang mempengaruhi keoptimalan keduanya. Hasil dari karakterisasi, diketahui variabel-variabel yang mempengaruhi kemampuan sistem DSSS yaitu nilai frekuensi spreading (). Sedangkan untuk sistem FHSS yaitu nilai frekuensi spreading ( dan ) dan selisih antara frekuensi hopping data dengan frekuensi hopping interferensi . Kata Kunci: BER, DSSS, FHSS, Interference, Spread spectrum. Abstract. In this study, characterization of Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum technologies have been done, as one of the multiple-access techniques in communication systems. Characterization is done to find out how to improve the ability of the two systems, in solving interference problems with the same system and channel. And also to determine what veriabel affects the ability of the two systems. Characterization is done by determining the variables that affect the ability of both. The results of the characterization, known variables that affect the ability of the DSSS system are the spreading frequency value (). As for the FHSS system, the spreading frequency value ( and ) and the difference between frequency hopping data with frequency hopping interference .


2016 ◽  
Vol 64 (21) ◽  
pp. 5513-5524 ◽  
Author(s):  
Feng Liu ◽  
Michael W. Marcellin ◽  
Nathan A. Goodman ◽  
Ali Bilgin

Sign in / Sign up

Export Citation Format

Share Document