SEISMIC EVALUATION OF RC FRAME WITH BRICK MASONRY INFILL WALLS

2015 ◽  
Vol 04 (03) ◽  
pp. 429-434
Author(s):  
Nitesh Singh .
2011 ◽  
Vol 255-260 ◽  
pp. 193-197
Author(s):  
Jia Chao Zhang ◽  
Lei Ming Zhang ◽  
Xi La Liu

Reinforced concrete (RC) frame with masonry infill walls is a very common structural system in low and medium rise buildings. The infill walls are usually considered as non-structural components in the design or assessment of buildings. However, many damages in earthquakes have shown that the infill walls can significantly change the structural response to seismic action. Consequently the evaluation of the seismic performance of RC frame with masonry infill walls becomes very important, and also turns to be a major challenge for structure engineers. In this paper a beam-and-column (BAC) macro model for walls is proposed to simulate the masonry infill walls in RC frames. In this model, the masonry panel is replaced by an equivalent rigid frame which is made up of some beam-and-column members. The geometric parameters of each member can be determined simply by equivalent stiffness combined with the original dimensions of wall panel. The physical characteristics are described directly by material properties of wall panel under investigation. To validate the rationality of proposed model, a masonry-infilled RC frame under cyclic reversed loading is analyzed by the proposed model. The results, including crack pattern, load versus displacement relation are then compared with the experiment response. Good agreements are found.


2013 ◽  
Vol 40 (8) ◽  
pp. 750-758 ◽  
Author(s):  
Dan Palermo ◽  
Ioan Nistor ◽  
Murat Saatcioglu ◽  
Ahmed Ghobarah

Damage to structures and infrastructure due to the Chile tsunami of 27 February 2010, is presented. Robust, modern engineered structures performed well during this tsunami and, generally, damage only to non-structural components was evident. The majority of damage was sustained by non-engineered residential homes located within the inundation zone. These dwellings consisted of either light timber frame construction or concrete frame construction with brick masonry infill walls. Many of the dwellings incorporated sheet metal as exterior cladding or roofing. The hydrodynamic (drag) forces, impulsive loading, hydrostatic forces, buoyant forces, and debris impact loading were probable sources during the tsunami causing the observed damage. Failures included punching of brick masonry infill walls, partial and complete collapse of load bearing elements such as columns, and sliding and unseating failures of second storey levels and roofs. A discussion of the state of the art in tsunami design practice is also provided.


Author(s):  
Sujan Pradhan ◽  
Yuebing Li ◽  
Yasushi Sanada

AbstractMany reinforced concrete (RC) frame buildings in Nepal were significantly damaged by the 7.8 magnitude (Mw) earthquake in Nepal on April 25, 2015. To contribute to mitigate future earthquake disasters, the current study focuses on two specific characteristics of residential RC frame buildings in the capital city of Nepal, Kathmandu: the application of brick masonry infill to exterior and partition walls, and the conventional vertical extension of building stories different from the design. Although these factors are likely to significantly affect the seismic performance, their effects are frequently neglected in practical design and construction management in developing countries. Hence, the main objective of this research is to investigate and clarify the seismic performance of RC frame buildings considering the above factors through experimental and numerical investigations. The present paper (1) briefly introduces the characteristics of a typical residential RC frame building in Kathmandu, (2) illustrates the numerical modeling parametrically considering three different contributions of brick masonry infill walls and (3) investigates the seismic performance of the RC frame building considering the effects of the infill wall modeling and the vertical extension through numerical analyses. Consequently, it was found that the consideration of the in-plane stiffness and strength of the infill walls resulted in both positive and negative contributions to the seismic performance of low-rise (up to three stories) and medium-rise (more than three stories) buildings respectively, quantitatively clarifying significant effects of the presence of infill and the vertical extension. These findings contribute to provide realistic solutions to upgrade the seismic performance by utilizing or removing the brick masonry infill walls or by managing the building stories to mitigate future earthquake disasters on typical RC frame buildings not only in Nepal but also in other countries with similar backgrounds.


2008 ◽  
Vol 17 (27) ◽  
pp. 82-83
Author(s):  
Marios A. KYRIAKIDES ◽  
Sarah L. BILLINGTON

Sign in / Sign up

Export Citation Format

Share Document