scholarly journals HIGH GAIN RECTANGULAR MICROSTRIP PATCH ANTENNA EMPLOYING POLYSTYRENE SUBSTRATE FOR SATELLITE COMMUNICATION APPLICATIONS

2016 ◽  
Vol 05 (06) ◽  
pp. 521-525
Author(s):  
Jaspreet Singh .
2020 ◽  
Vol 17 (2) ◽  
pp. 1469-1473
Author(s):  
Ahmed Jamal Abdullah Al-Gburi ◽  
I. M. Ibrahim ◽  
Z. Zakaria

A rectangular microstrip patch antenna over ultra-wideband with superstrate are designed and analyzed. Four iterations A, B, C, D were designs. Iterations A and B represent the parametric study of the microstrip patch antenna. Iteration C represents Ultrawide band microstrip patch antenna with peak realized gain 4.196 dB at frequency 10.12 GHz, the gain was enhance using superstrate above the microstrip patch antenna as in iteration D, a novel enhancement happens for the whole ultra-wideband frequency band (3.1–10.6 GHz) with highest salient realised gain of 5.3 dB at frequency 10.55 GHz. The proposed antenna gain at iteration D is increased by 26.49%, which is useful for many applications such as satellite communication. Simulation and discussion results of the proposed antenna are present within this paper.


This paper presents the design and simulation of a rectangular microstrip patch antenna with enhanced results. Antennas are playing the most important key role in wireless communication systems and especially microstrip patch antenna is the simplest and best form for mobile communication systems. Therefore, the design of antenna for mobile satellite communication and space to earth communication is described in this proposed work. The working of rectangular micro strip patch antenna is studied and the effect of height of the substrate on antenna performance is analyzed and the results are plotted. It has been noticed that the height of substrate should be neither small nor large. The effect of inserting a slot in the patch is also observed in this paper. Return Loss results are plotted for the designed structure and it is noticed that return loss is almost doubled by inserting a slot. Further two symmetrical slots are inserted in the patch and the respective results are plotted. Insertion of two slots gave multiple operating frequencies to the antenna with a compromise of s11. The simulation of proposed structures of antennas is done using ANSYS HFSS (high-frequency structure simulator) which is commercially used as a finite element method solver for electromagnetic structures. A sphere with human brain characteristics is created and average SAR (specific absorption ratio) is plotted on the head model. The proposed antenna has enhanced return loss of -52dB and VSWR of 1.005 at 2.24GHz. This work also introduces multiple operating frequencies using two slots of same size.


Sign in / Sign up

Export Citation Format

Share Document