scholarly journals Influence of trajectories on the joint torques of kinematically redundant manipulators

2007 ◽  
Vol 29 (2) ◽  
pp. 65-72
Author(s):  
Nguyen Van Khang ◽  
Do Anh Tuan ◽  
Nguyen Phong Dien ◽  
Tran Hoang Nam

This paper presents an algorithm for solving the inverse dynamics problem of redundant manipulators using MAPLE software. The method has the advantage of generating efficient symbolic solutions which reduces the computational cost. The influence of trajectories on the joint torques of redundant manipulators is considered. The theory is illustrated by the numerical simulation of a redundant four-link planar manipulator.

Author(s):  
Robert L. Williams

This paper presents a partial decoupling method for the well-known matrix method commonly in use for the linear inverse dynamics problem of planar mechanisms. Any mechanism with a dyad of binary links can benefit from the proposed method, which involves extracting submatrices by looking for sufficient columns of zeros such that a reduced problem may first be solved with an equal number of scalar equations and unknowns. Then some equal-and-opposite internal joint forces are transferred to the remaining FBDs and the solution proceeds until the input link is solved in a decoupled manner. The method leads to significant reductions in computational cost for common planar mechanisms. The kinematics & dynamics textbooks have overlooked this partial decoupling in their presentations of the matrix method for inverse dynamics.


Author(s):  
Naser Mostashiri ◽  
Alireza Akbarzadeh ◽  
Jaspreet Dhupia ◽  
Alexander Verl ◽  
Weiliang Xu

In this paper, using the Lagrange’s method a comprehensive inverse dynamics problem of a 6-3 UPS Stewart platform is investigated. First, the inverse kinematics problem is solved and the Jacobian matrix is derived. Next, the full inverse dynamics problem of the robot, taking into account the mass of links and inertia, is investigated and its governing equations are derived. The correctness of the dynamics equations are verified in two ways, first, using the results of the virtual work method and second using the results of a commercial multi-body dynamics software. Because the dynamic calculation is time consuming, two simplifying assumptions are considered. First, the link is assumed to have a zero mass and next it is assumed as a point mass. Studying the former assumption is rather straightforward. However, more complex equations are needed and derived in the present paper for the latter assumption. Required actuator forces for the two assumptions are compared with the case where the mass and link inertial is fully considered. It is shown that the first simplifying assumption significantly affects the accuracy of the required joint torques.


Author(s):  
Krzysztof Tchoń ◽  
Katarzyna Zadarnowska

AbstractWe examine applicability of normal forms of non-holonomic robotic systems to the problem of motion planning. A case study is analyzed of a planar, free-floating space robot consisting of a mobile base equipped with an on-board manipulator. It is assumed that during the robot’s motion its conserved angular momentum is zero. The motion planning problem is first solved at velocity level, and then torques at the joints are found as a solution of an inverse dynamics problem. A novelty of this paper lies in using the chained normal form of the robot’s dynamics and corresponding feedback transformations for motion planning at the velocity level. Two basic cases are studied, depending on the position of mounting point of the on-board manipulator. Comprehensive computational results are presented, and compared with the results provided by the Endogenous Configuration Space Approach. Advantages and limitations of applying normal forms for robot motion planning are discussed.


Author(s):  
Alessandro Cammarata ◽  
Rosario Sinatra

This paper presents kinematic and dynamic analyses of a two-degree-of-freedom pointing parallel mechanism. The mechanism consists of a moving platform, connected to a fixed platform by two legs of type PUS (prismatic-universal-spherical). At first a simplified kinematic model of the pointing mechanism is introduced. Based on this proposed model, the dynamics equations of the system using the Natural Orthogonal Complement method are developed. Numerical examples of the inverse dynamics results are presented by numerical simulation.


2002 ◽  
Vol 35 (11) ◽  
pp. 1507-1513 ◽  
Author(s):  
Violaine Cahouët ◽  
Martin Luc ◽  
Amarantini David

Author(s):  
Shangdong Gong ◽  
Redwan Alqasemi ◽  
Rajiv Dubey

Motion planning of redundant manipulators is an active and widely studied area of research. The inverse kinematics problem can be solved using various optimization methods within the null space to avoid joint limits, obstacle constraints, as well as minimize the velocity or maximize the manipulability measure. However, the relation between the torques of the joints and their respective positions can complicate inverse dynamics of redundant systems. It also makes it challenging to optimize cost functions, such as total torque or kinematic energy. In addition, the functional gradient optimization techniques do not achieve an optimal solution for the goal configuration. We present a study on motion planning using optimal control as a pre-process to find optimal pose at the goal position based on the external forces and gravity compensation, and generate a trajectory with optimized torques using the gradient information of the torque function. As a result, we reach an optimal trajectory that can minimize the torque and takes dynamics into consideration. We demonstrate the motion planning for a planar 3-DOF redundant robotic arm and show the results of the optimized trajectory motion. In the simulation, the torque generated by an external force on the end-effector as well as by the motion of every link is made into an integral over the squared torque norm. This technique is expected to take the torque of every joint into consideration and generate better motion that maintains the torques or kinematic energy of the arm in the safe zone. In future work, the trajectories of the redundant manipulators will be optimized to generate more natural motion as in humanoid arm motion. Similar to the human motion strategy, the robot arm is expected to be able to lift weights held by hands, the configuration of the arm is changed along from the initial configuration to a goal configuration. Furthermore, along with weighted least norm (WLN) solutions, the optimization framework will be more adaptive to the dynamic environment. In this paper, we present the development of our methodology, a simulated test and discussion of the results.


Sign in / Sign up

Export Citation Format

Share Document