scholarly journals Search for High Energy Skimming Neutrinos at a Surface Detector Array

2012 ◽  
Vol 20 (4) ◽  
Author(s):  
Vo Van Thuan ◽  
Hoang Van Khanh ◽  
Pham Ngoc Diep
2019 ◽  
Vol 209 ◽  
pp. 01029
Author(s):  
Daniela Mockler

The flux of ultra-high energy cosmic rays above 3×1017 eV has been measured with unprecedented precision at the Pierre Auger Observatory. The flux of the cosmic rays is determined by four different measurements. The surface detector array provides three data sets, two formed by dividing the data into two zenith angle ranges, and one obtained from a nested, denser detector array. The fourth measurement is obtained with the fluorescence detector. By combing all four data sets, the all-sky flux of cosmic rays is determined. The spectral features are discussed in detail and systematic uncertainties are addressed.


2020 ◽  
Vol 492 (3) ◽  
pp. 3984-3993 ◽  
Author(s):  
R U Abbasi ◽  
M Abe ◽  
T Abu-Zayyad ◽  
M Allen ◽  
R Azuma ◽  
...  

ABSTRACT The surface detector (SD) of the Telescope Array (TA) experiment allows us to detect indirectly photons with energies of the order of 1018 eV and higher, and to separate photons from the cosmic ray background. In this paper, we present the results of a blind search for point sources of ultra-high-energy (UHE) photons in the Northern sky using the TA SD data. The photon-induced extensive air showers are separated from the hadron-induced extensive air shower background by means of a multivariate classifier based upon 16 parameters that characterize the air shower events. No significant evidence for the photon point sources is found. The upper limits are set on the flux of photons from each particular direction in the sky within the TA field of view, according to the experiment’s angular resolution for photons. The average 95 per cent confidence level upper-limits for the point-source flux of photons with energies greater than 1018, 1018.5, 1019, 1019.5 and 1020 eV are 0.094, 0.029, 0.010, 0.0073 and 0.0058 km−2yr−1, respectively. For energies higher than 1018.5 eV, the photon point-source limits are set for the first time. Numerical results for each given direction in each energy range are provided as a supplement to this paper.


2019 ◽  
Vol 210 ◽  
pp. 01006 ◽  
Author(s):  
Jon Paul Lundquist ◽  
Pierre V. Sokolsky

Evidence of supergalactic structure of multiplets has been found for ultra-high energy cosmic rays (UHECR) with energies above 1019 eV using 7 years of data from the Telescope Array (TA) surface detector. The tested hypothesis is that UHECR sources, and intervening magnetic fields, may be correlated with the supergalactic plane, as it is a fit to the average matter density within the GZK horizon. This structure is measured by the average behavior of the strength of intermediate-scale correlations between event energy and position (multiplets). These multiplets are measured in wedge-like shapes on the spherical surface of the fieldof-view to account for uniform and random magnetic fields. The evident structure found is consistent with toy-model simulations of a supergalactic magnetic sheet and the previously published Hot/Coldspot results of TA. The post-trial probability of this feature appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be ~4.5σ.


2011 ◽  
Author(s):  
G. I. Rubtsov ◽  
D. Ivanov ◽  
B. T. Stokes ◽  
G. B. Thomson ◽  
S. V. Troitsky ◽  
...  

2019 ◽  
Vol 210 ◽  
pp. 01008
Author(s):  
William Hanlon

Telescope Array (TA) has recently published results of nearly nine years of Xmax observations providing its highest statistics measurement of ultra high energy cosmic ray (UHECR) mass composition to date for energies exceeding 1018.2 eV. This analysis measured agreement of observed data with results expected for four different single elements. Instead of relying only on the first and second moments of Xmax distributions, we employ a morphological test of agreement between data and Monte Carlo to allow for systematic uncertainties in data and in current UHECR hadronic models. Results of this latest analysis and implications of UHECR composition observed by TA are presented. TA can utilize different analysis methods to understand composition as both a crosscheck on results and as a tool to understand systematics affecting Xmax measurements. The different analysis efforts utilizing fluorescence detector stereo, surface detector and fluorescence detector hybrid, and surface detector-only, currently underway at TA performed to understand composition are also discussed.


2016 ◽  
Vol 12 (S324) ◽  
pp. 295-298
Author(s):  
Lili Yang ◽  

AbstractThe first gravitational wave transient GW150914 was observed by Advanced LIGO on September 14th, 2015 at 09:50:45 Universal Time. In addition to follow-up electromagnetic observations, the detection of neutrinos will probe deeply and more on the nature of astrophysical sources, especially in the ultra-high energy regime. Neutrinos in the EeV energy range were searched in data collected at the surface detector of the Pierre Auger Observatory within ± 500 s and 1 day after the GW150914 event. No neutrino candidates were found. Based on this non-observation, we derive the first and only neutrino fluence upper limit at EeV energies for this event at 90% CL, and report constraints on existence of accretion disk around mergers.


2020 ◽  
Vol 181 ◽  
pp. 104782
Author(s):  
Pierre Guiot ◽  
Mathieu Vincendon ◽  
John Carter ◽  
Yves Langevin ◽  
Alain Carapelle

Sign in / Sign up

Export Citation Format

Share Document