On the energy estimation of ultra-high-energy cosmic rays observed with the surface detector array

1988 ◽  
Vol 14 (6) ◽  
pp. 793-805 ◽  
Author(s):  
H Y Dai ◽  
K Kasahara ◽  
Y Matsubara ◽  
M Nagano ◽  
M Teshima
2019 ◽  
Vol 209 ◽  
pp. 01029
Author(s):  
Daniela Mockler

The flux of ultra-high energy cosmic rays above 3×1017 eV has been measured with unprecedented precision at the Pierre Auger Observatory. The flux of the cosmic rays is determined by four different measurements. The surface detector array provides three data sets, two formed by dividing the data into two zenith angle ranges, and one obtained from a nested, denser detector array. The fourth measurement is obtained with the fluorescence detector. By combing all four data sets, the all-sky flux of cosmic rays is determined. The spectral features are discussed in detail and systematic uncertainties are addressed.


2018 ◽  
Vol 191 ◽  
pp. 08007
Author(s):  
Yana Zhezher

The results on ultra-high energy cosmic rays’ chemical composition based on the data from the Telescope Array surface detector are reported. The analysis is based the boosted decision tree (BDT) multivariate analysis built upon 14 observables related to both the properties of the shower front and the lateral distribution function. The multivariate classifier is trained with Monte-Carlo sets: proton-induced, which is considered as background events, and ironinduced, considered as signal events. The classifier results in a single variable ξ for data and Monte-Carlo sets, available for one-dimensional analysis. The data to Monte-Carlo comparison results in an average atomic mass of UHECR for energy range 1018:0 - 1020:0 eV. The average atomic mass of primary particles corresponds to 〈ln A〉 = 1:52± 0:08(stat.)± 0:1(syst.). The comparison with TA hybrid composition results and the other experiments is presented.


2019 ◽  
Author(s):  
Marta Trini

In the EeV range, neutrinos are expected to be produced by ultra-high energy cosmic rays interactions with the Cosmic Microwave Background during propagation in the Universe. We report on the search for ultra-high energy neutrinos in data collected with the Surface Detector of the Pierre Auger Observatory. The searches are most efficient in the zenith angle range from 60 degrees to 95 degrees with tau neutrinos skimming in the Earth playing a dominant role. The present non-detection of UHE neutrinos in the Pierre Auger Observatory excludes the most optimistic scenarios of neutrino production in terms of UHE cosmic rays chemical composition and cosmological evolution of the acceleration sites. We also report on the searches for neutrinos in coincidence with the recent Gravitational Wave events detected by LIGO/Virgo.


2019 ◽  
Vol 216 ◽  
pp. 01010
Author(s):  
Jörg R. Hörandel

The Pierre Auger observatory is presently being upgraded to enlarge its detection capabilities for ultra-high-energy cosmic rays. Part of this upgrade is a radio detector array, aimed to cover a surface area of 3000 km2 to measure the properties of the highestenergy cosmic rays. The plans for this radio upgrade are outlined.


2019 ◽  
Vol 210 ◽  
pp. 06005 ◽  
Author(s):  
Jörg R. Hörandel ◽  

The Pierre Auger Observatory is presently being upgraded to enlarge its detection capabilities for ultra-high-energy cosmic rays. Part of this upgrade is a radio detector array, aimed to cover a surface area of 3000 km2 to measure the properties of the highest-energy cosmic rays. The plans for this radio upgrade are outlined


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


Sign in / Sign up

Export Citation Format

Share Document