scholarly journals Thermoelastic strain and stress fields due to a spherical inclusion in an elastic half-space

Author(s):  
Kuldip Singh ◽  
Renu Muwal
2015 ◽  
Vol 203 (2) ◽  
pp. 1193-1206 ◽  
Author(s):  
E. Pan ◽  
A. Molavi Tabrizi ◽  
A. Sangghaleh ◽  
W. A. Griffith

1996 ◽  
Vol 63 (4) ◽  
pp. 925-932 ◽  
Author(s):  
L. Z. Wu ◽  
S. Y. Du

The problem of a circular cylindrical inclusion with uniform eigenstrain in an elastic half-space is studied by using the Green’s function technique. Explicit solutions are obtained for the displacement and stress fields. It is shown that the present elastic fields can be expressed as functions of the complete elliptic integrals of the first, second, and third kind. Finally, numerical results are shown for the displacement and stress fields.


1997 ◽  
Vol 64 (3) ◽  
pp. 471-479 ◽  
Author(s):  
I. Jasiuk ◽  
P. Y. Sheng ◽  
E. Tsuchida

We find the elastic fields in a half-space (matrix) having a spherical inclusion and subjected to either a remote shear stress parallel to its traction-free boundary or to a uniform shear transformation strain (eigenstrain) in the inclusion. The inclusion has distinct properties from those of the matrix, and the interface between the inclusion and the surrounding matrix is either perfectly bonded or is allowed to slip without friction. We obtain an analytical solution to this problem using displacement potentials in the forms of infinite integrals and infinite series. We include numerical examples which give the local elastic fields due to the inclusion and the traction-free surface.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
H. J. Chu ◽  
E. Pan ◽  
J. Wang ◽  
I. J. Beyerlein

The elastic displacement and stress fields due to a polygonal dislocation within an anisotropic homogeneous half-space are studied in this paper. Simple line integrals from 0 to π for the elastic fields are derived by applying the point-force Green’s functions in the corresponding half-space. Notably, the geometry of the polygonal dislocation is included entirely in the integrand easing integration for any arbitrarily shaped dislocation. We apply the proposed method to a hexagonal shaped dislocation loop with Burgers vector along [1¯ 1 0] lying on the crystallographic (1 1 1) slip plane within a half-space of a copper crystal. It is demonstrated numerically that the displacement jump condition on the dislocation loop surface and the traction-free condition on the surface of the half-space are both satisfied. On the free surface of the half-space, it is shown that the distributions of the hydrostatic stress (σ11 + σ22)/2 and pseudohydrostatic displacement (u1 + u2)/2 are both anti-symmetric, while the biaxial stress (σ11 − σ22)/2 and pseudobiaxial displacement (u1 − u2)/2 are both symmetric.


Sign in / Sign up

Export Citation Format

Share Document