scholarly journals TASOS1 AND TATM20 GENES EXPRESSION AND NUTRIENT UPTAKE IN WHEAT SEEDLINGS MAY BE ALTERED VIA EXCESS CADMIUM EXPOSURE AND INOCULATION WITH AZOSPIRILLUM BRASILENSE SP7 UNDER SALINE CONDITION

2018 ◽  
Vol 16 (2) ◽  
pp. 1797-1817 ◽  
Author(s):  
H. R. GHASSEMI
2018 ◽  
Vol 111 (2) ◽  
pp. 431 ◽  
Author(s):  
Hamid Reza GHASSEMI ◽  
Akbar MOSTAJERAN ◽  
Abolghasem ESMAEILI

<p>Salinity stress reduces plant growth via failure of physiological processes mainly due to the abundance of Na<sup>+</sup> ion. Salt overly sensitive (SOS) signaling pathway is considered as an important component of Na<sup>+</sup>/K<sup>+</sup> homeostasis system in plants, especially under saline condition. Moreover, it is reported that wheat-Azospirillum associated has resulted in an enhanced salinity tolerance. To evaluate involvement of Azospirillum species in regulation of SOS signaling pathway, inoculated and none-inoculated wheat seedlings with Azospirillum brasilense Sp7 were grown for five days. Then uniform seedlings were transferred into saline hydroponic media with and without 200 mM NaCl. The relative expression of TaSOS1 of root, sheath, and blade as well as Na<sup>+</sup>/K<sup>+</sup> ratio was measured after 6, 24 and 48 hours since inoculated and non-inoculated seedling were transferred to NaCl media. Simultaneously Ca, Fe, proline content, root and shoot dry mass and soluble sugars were measured at 72 hour after application of NaCl. Result showed that salinity increased TaSOS1 gene expression, Na<sup>+</sup>, prolin and Na<sup>+</sup>/K<sup>+</sup> ratio but Ca and Fe were decreased in root and shoot of wheat seedlings. Although A. brasilense Sp7 could improve salinity tolerance in wheat via reduction of Na uptake and upregulation of TaSOS1 expression, but do not have any effect in sodium distribution within plant parts. Therefore, salinity could increase TaSOS1 expression in the root, sheath and blade and A. brasilense Sp7 also could reduce the adverse effect of salinity via addition of over expression of TaSOS1.</p>


1992 ◽  
Vol 38 (10) ◽  
pp. 1042-1047 ◽  
Author(s):  
Christian Chauret ◽  
Wilfredo L. Barraquio ◽  
Roger Knowles

Nondenaturating disc gel electrophoresis revealed that 99Mo was incorporated into the nitrate reductase of Azospirillum brasilense grown in the absence but not in the presence of tungstate. Under denitrifying conditions, A. brasilense grown in tungsten-free medium steadily accumulated 99Mo for 12 h. In contrast, Paracoccus denitrificans grown under the same conditions ceased uptake after 1 h. However, both bacteria were incapable of accumulating significant amounts of 99Mo in media containing 10 mM tungstate, even though nitrate was reduced by A. brasilense. Aerobically grown A. brasilense cells transported 99Mo more efficiently than anaerobically grown cells. Key words: Azospirillum brasilense, tungsten, molybdenum incorporation, nitrate reduction.


2021 ◽  
pp. 103875
Author(s):  
Ashutosh Prakash Dubey ◽  
Parul Pandey ◽  
Shivangi Mishra ◽  
Parikshit Gupta ◽  
Anil Kumar Tripathi

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Wedad A. Kasim ◽  
Mohamed E. H. Osman ◽  
Mohamed N. Omar ◽  
Samar Salama

Abstract Background The effectiveness of two PGPB; Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11 was investigated in enhancing the drought tolerance of wheat (Triticum aestivum L.) seedlings cultivar Gemiza9. The inoculated or uninoculated grains were sown in unsterilized sandy soil and watered normally untill the 8th day. Drought stress was initiated by completely withholding water for 7 days (until wilting). Samples were collected after 15 days from sowing to evaluate some growth criteria, damage and defense indicators and to analyze the roots’ protein pattern. Results The results showed that inoculating wheat seedlings with these strains significantly diminished the inhibitory effects of drought stress on the relative water content of roots, shoots and leaves; area of leaves; contents of pigments (chlorophyll a and b) and ascorbic acid; and on the protein patterns of roots. Moreover, the bacterial inoculation notably reduced the drought-induced damage indicated by lower leakage of electrolytes and less accumulation of Malondialdehyde and hydrogen peroxide, surprisingly with less enhanced production of proline and activities of catalase and peroxidase than their uninoculated counterparts. Under normal conditions, inoculating wheat plants with these PGPB resulted in significantly promoted growth and elevated contents of pigments and altered protein patterns of roots. Conclusion Overall, we can say that both Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11 were able to deactivate the growth inhibition in wheat seedlings to some extent, while maintaining a certain level of efficient protection against damage under drought stress.


1991 ◽  
Vol 137 (9) ◽  
pp. 2241-2246 ◽  
Author(s):  
K. W. Michiels ◽  
C. L. Croes ◽  
J. Vanderleyden

Sign in / Sign up

Export Citation Format

Share Document