scholarly journals A note on the paper “Best constants for the Hardy−Litllewood maximal operator on finite graphs”

Author(s):  
Zaryab Hussain ◽  
Sadia Talib
2021 ◽  
Vol 164 (1) ◽  
pp. 133-148
Author(s):  
Łukasz Kamiński ◽  
Adam Osękowski

2008 ◽  
Vol 45 (3) ◽  
pp. 321-331
Author(s):  
István Blahota ◽  
Ushangi Goginava

In this paper we prove that the maximal operator of the Marcinkiewicz-Fejér means of the 2-dimensional Vilenkin-Fourier series is not bounded from the Hardy space H2/3 ( G2 ) to the space L2/3 ( G2 ).


1988 ◽  
Vol 26 (1-2) ◽  
pp. 327-340 ◽  
Author(s):  
Francisco J. Ruiz ◽  
Jose L. Torrea

Author(s):  
J.M BUDD ◽  
Y. VAN GENNIP

An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation10(3), 1090–1118), which used the Allen–Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci.6(4), 1903–1930) using instead the Merriman–Bence–Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.52(5), 4101–4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen–Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical scheme for Allen–Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math.48, 249–264), we define a mass-conserving Allen–Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen–Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.


2010 ◽  
Vol 53 (1) ◽  
pp. 211-237 ◽  
Author(s):  
Hannes Luiro

AbstractWe establish the continuity of the Hardy-Littlewood maximal operator on W1,p(Ω), where Ω ⊂ ℝn is an arbitrary subdomain and 1 < p < ∞. Moreover, boundedness and continuity of the same operator is proved on the Triebel-Lizorkin spaces Fps,q (Ω) for 1 < p,q < ∞ and 0 < s < 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Takeshi Iida

The aim of this paper is to prove the boundedness of the Hardy-Littlewood maximal operator on weighted Morrey spaces and multilinear maximal operator on multiple weighted Morrey spaces. In particular, the result includes the Komori-Shirai theorem and the Iida-Sato-Sawano-Tanaka theorem for the Hardy-Littlewood maximal operator and multilinear maximal function.


Sign in / Sign up

Export Citation Format

Share Document