scholarly journals CHANGE MANAGEMENT OF DRUG PRODUCTS REGISTRATION CONDITIONS: NEW ICH Q12 GUIDELINE

2018 ◽  
Vol 73 (3) ◽  
pp. 181-189
Author(s):  
A. P. Meshkovskii ◽  
N. V. Pyatigorskaya ◽  
V. V. Beregovykh ◽  
Zh. I. Aladysheva ◽  
V. V. Belyaev ◽  
...  

Introduction of amendments to the registration dossier is the responsibility of the marketing application holder (MAH). Increased knowledge on pharmaceuticals, its manufacturing and control processes can reduce the number of documents submitted to the regulatory authorities. The existing requirements establishing the procedure for the introduction of amendments differ in terms of change classification, period of notification of regulatory authorities, ways of conformity validation of pharmaceutical properties, etc. ICH proposed draft guideline Q12 «Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management» which covers the problem of harmonization of regulatory approaches to the changes provided in the «Quality» section of CTD during the commercial phase of drug life cycle. The new guideline can be considered as the continuation and elaboration of previous ICH documents. The article provides explanations on the main provisions and regulatory mechanisms introduced by the draft guideline ICH Q12: categorization of post-approval changes, established conditions, post-approval change management protocol, and drug product lifecycle management.

2005 ◽  
Vol 5 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Ravi M. Rangan ◽  
Steve M. Rohde ◽  
Russell Peak ◽  
Bipin Chadha ◽  
Plamen Bliznakov

The past three decades have seen phenomenal growth in investments in the area of product lifecycle management (PLM) as companies exploit opportunities in streamlining product lifecycle processes, and fully harnessing their data assets. These processes span all product lifecycle phases from requirements definition, systems design/ analysis, and simulation, detailed design, manufacturing planning, production planning, quality management, customer support, in-service management, and end-of-life recycling. Initiatives ranging from process re-engineering, enterprise-level change management, standardization, globalization and the like have moved PLM processes to mission-critical enterprise systems. Product data representations that encapsulate semantics to support product data exchange and PLM collaboration processes have driven several standards organizations, vendor product development efforts, real-world PLM implementations, and research initiatives. However, the process and deployment dimensions have attracted little attention: The need to optimize organization processes rather than individual benefits poses challenging “culture change management” issues and have derailed many enterprise-scale PLM efforts. Drawn from the authors’ field experiences as PLM system integrators, business process consultants, corporate executives, vendors, and academicians, this paper explores the broad scope of PLM, with an added focus on the implementation and deployment of PLM beyond the development of technology. We review the historical evolution of engineering information management/PLM systems and processes, characterize PLM implementations and solution contexts, and discuss case studies from multiple industries. We conclude with a discussion of research issues motivated by improving PLM adoption in industry.


2021 ◽  
Author(s):  
Muhammad Anwary

This thesis presents a complete set of user requirements and high-level architecture for [a] product lifecycle management (PLM) system for small and medium-sized enterprises (SMEs). Engineering activities such as engineering change management (ECM) and product data management (PDM) are emphasized. The system is designed to be developed in [an] open source environment. Therefore the system is called Open Product Lifecycle Management (OPLM) system. The thesis begins with a presentation of the motivation for the work and description of products and literature in the areas of PLM, SME and open source. An industry survey is conducted to elicit requirements of OPLM. Engineering change management (ECM) process is described and a modified framework for ECM in OPLM is presented. The proposed model is expected to make ECM faster, reusable and accurate. Four OPLM subsystems, namely, product data management, engineering change management, process management and business intelligence are defined. For each of the subsystems, subsystem components are identified and defined.


2021 ◽  
Author(s):  
Muhammad Anwary

This thesis presents a complete set of user requirements and high-level architecture for [a] product lifecycle management (PLM) system for small and medium-sized enterprises (SMEs). Engineering activities such as engineering change management (ECM) and product data management (PDM) are emphasized. The system is designed to be developed in [an] open source environment. Therefore the system is called Open Product Lifecycle Management (OPLM) system. The thesis begins with a presentation of the motivation for the work and description of products and literature in the areas of PLM, SME and open source. An industry survey is conducted to elicit requirements of OPLM. Engineering change management (ECM) process is described and a modified framework for ECM in OPLM is presented. The proposed model is expected to make ECM faster, reusable and accurate. Four OPLM subsystems, namely, product data management, engineering change management, process management and business intelligence are defined. For each of the subsystems, subsystem components are identified and defined.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 84
Author(s):  
Andreas Deuter ◽  
Sebastian Imort

Product lifecycle management (PLM) as a holistic process encompasses the idea generation for a product, its conception, and its production, as well as its operating phase. Numerous tools and data models are used throughout this process. In recent years, industry and academia have developed integration concepts to realize efficient PLM across all domains and phases. However, the solutions available in practice need specific interfaces and tend to be vendor dependent. The Asset Administration Shell (AAS) aims to be a standardized digital representation of an asset (e.g., a product). In accordance with its objective, it has the potential to integrate all data generated during the PLM process into one data model and to provide a universally valid interface for all PLM phases. However, to date, there is no holistic concept that demonstrates this potential. The goal of this research work is to develop and validate such an AAS-based concept. This article demonstrates the application of the AAS in an order-controlled production process, including the semi-automatic generation of PLM-related AAS data. Furthermore, it discusses the potential of the AAS as a standard interface providing a smooth data integration throughout the PLM process.


2021 ◽  
Vol 11 (13) ◽  
pp. 5975
Author(s):  
Ana María Camacho ◽  
Eva María Rubio

The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 14 contributions published in this Special Issue of Applied Sciences present cutting-edge advances in the field of Manufacturing Engineering focusing on advances and innovations in manufacturing processes; additive manufacturing and 3D printing; manufacturing of new materials; Product Lifecycle Management (PLM) technologies; robotics, mechatronics and manufacturing automation; Industry 4.0; design, modeling and simulation in manufacturing engineering; manufacturing engineering and society; and production planning. Among them, the topic “Manufacturing engineering and society” collected the highest number of contributions (representing 22%), followed by the topics “Product Lifecycle Management (PLM) technologies”, “Industry 4.0”, and “Design, modeling and simulation in manufacturing engineering” (each at 14%). The rest of the topics represent the remaining 35% of the contributions.


Author(s):  
Shinichi Fukushige ◽  
Yuki Matsuyama ◽  
Eisuke Kunii ◽  
Yasushi Umeda

Within the framework of sustainability in manufacturing industry, product lifecycle design is a key approach for constructing resource circulation systems of industrial products that drastically reduce environmental loads, resource consumption and waste generation. In such design, designers should consider both a product and its lifecycle from a holistic viewpoint, because the product’s structure, geometry, and other attributes are closely coupled with the characteristics of the lifecycle. Although product lifecycle management (PLM) systems integrate product data during its lifecycle into one data architecture, they do not focus on support for lifecycle design process. In other words, PLM does not provide explicit models for designing product lifecycles. This paper proposes an integrated model of a product and its lifecycle and a method for managing consistency between the two. For the consistency management, three levels of consistency (i.e., topological, geometric, and semantic) are defined. Based on this management scheme, the product lifecycle model allows designers to evaluate environmental, economic, and other performance of the designed lifecycle using lifecycle simulation.


Sign in / Sign up

Export Citation Format

Share Document