Volume 4: 18th Design for Manufacturing and the Life Cycle Conference; 2013 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications
Latest Publications


TOTAL DOCUMENTS

105
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791855911

Author(s):  
Jörg Stöcklein ◽  
Daniel Baldin ◽  
Wolfgang Müller ◽  
Tao Xie

In our paper we present a virtual test environment for self-optimizing systems based on mutant based testing to validate user tasks of a real-time operating system. This allows the efficient validation of the code coverage of the test cases and therefore helps to detect errors in order to improving the reliability of the system software. Technically we are able to run and test the software on both systems. By writing application software and setting up the virtual test environment properly, we define our test cases. To validate the code coverage for our test cases, we use the approach of mutant based testing. By running this mutated code on our virtual prototype in the virtual test environment, we are able to efficiently validate the code coverage and are able to detect bugs in the application code or detect dead code that is not executed. Finding non-executing code leads to redefinition of our test cases by either changing the test environment or the application code in the case of dead code. We implemented the virtual test environment on top of the third party low cost VR system Unity 3D, which is frequently used in entertainment and education. We demonstrate our concepts by the example of our BeBot robot vehicles. The implementation is based on our self-optimizing real-time operating system ORCOS and we used the tool CERTITUDE(TM) for generating the mutations in our application code. Our BeBot virtual prototype in our virtual test environment implements the same low-level interface to the underlying hardware as the real BeBot. This allows a redirection of commands in ORCOS to either the real or the virtual BeBot in order to provide a VR based platform for early software development as well as ensures comparable conditions under both environments. Our example applies a virtual BeBot that drives through a labyrinth utilizing its IR sensors for navigation. The mutant based testing checks if all situations implemented by the software to navigate through the labyrinth are covered by our tests.


Author(s):  
Emanuele Frontoni ◽  
Adriano Mancini ◽  
Primo Zingaretti ◽  
Andrea Gatto

Advanced technical developments have increased the efficiency of devices in capturing trace amounts of energy from the environment (such as from human movements) and transforming them into electrical energy (e.g., to instantly charge mobile devices). In addition, advancements in microprocessor technology have increased power efficiency, effectively reducing power consumption requirements. In combination, these developments have sparked interest in the engineering community to develop more and more applications that utilize energy harvesting for power. The approach here described aims to designing and manufacturing an innovative easy-to-use and general-purpose device for energy harvesting in general purpose shoes. The novelty of this device is the integration of polymer and ceramic piezomaterials accomplished by injection molding. In this spirit, this paper examines different devices that can be built into a shoe, (where excess energy is readily harvested) and used for generating electrical power while walking. A Main purpose is the development of an indoor localization system embedded in shoes that periodically broadcasts a digital RFID as the bearer walks. Results are encouraging and real life test are conducted on the first series of prototypes.


Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.


Author(s):  
Shinichi Fukushige ◽  
Yuki Matsuyama ◽  
Eisuke Kunii ◽  
Yasushi Umeda

Within the framework of sustainability in manufacturing industry, product lifecycle design is a key approach for constructing resource circulation systems of industrial products that drastically reduce environmental loads, resource consumption and waste generation. In such design, designers should consider both a product and its lifecycle from a holistic viewpoint, because the product’s structure, geometry, and other attributes are closely coupled with the characteristics of the lifecycle. Although product lifecycle management (PLM) systems integrate product data during its lifecycle into one data architecture, they do not focus on support for lifecycle design process. In other words, PLM does not provide explicit models for designing product lifecycles. This paper proposes an integrated model of a product and its lifecycle and a method for managing consistency between the two. For the consistency management, three levels of consistency (i.e., topological, geometric, and semantic) are defined. Based on this management scheme, the product lifecycle model allows designers to evaluate environmental, economic, and other performance of the designed lifecycle using lifecycle simulation.


Author(s):  
Rahul Renu ◽  
Matthew Peterson ◽  
Gregory Mocko ◽  
Joshua Summers

Assembly process sheets are formal documents used extensively within automotive original equipment manufacturers (OEMs) to document and communicate assembly procedure, required tooling, contingency plans, and time study results. These sheets are authored throughout the vehicle life-cycle. Further, various customers use these sheets for training, analyzing the process, and line-balancing. In this research, the primary focus is the time studies analysis that is completed using knowledge contained within the assembly process sheets. In this research, a method and software tool are developed to utilize coupling between part descriptions and process descriptions for assembly time studies. The method is realized through the development of a standardized vocabulary for describing work instructions, a mapping from work instructions to MTM codes, and a tool for extracting relevant part information from CAD models. The approach enables process planners to establish part-process coupling, author work instructions using the controlled vocabulary, to estimate assembly time. A prototype system is developed and tested using examples from an automotive OEM.


Author(s):  
Chinmay Sane ◽  
Conrad S. Tucker

With continued emphasis on sustainability-driven design, reverse logistics is emerging as a vital competitive supply chain strategy for many of the global high-tech manufacturing firms. Various original equipment manufacturers (OEMs) and multi-product manufacturing firms are enhancing their reverse logistics strategies in order to establish an optimal closed-loop supply chain through which they can introduce refurbished variants of their products back into the market. While a refurbished product strategy helps to mitigate environmental impact challenges as well as provide additional economic benefits, it is limited to an existing product market, possibly a subset of the existing market, and fails to commercialize/target new markets. In addition to refurbishing, the alternatives available for utilizing End-Of-Life (EOL) products are currently restricted to recycling and permanent disposal. In this work, the authors propose employing a new EOL option called “resynthesis” that utilizes existing waste from EOL products in a novel way. This is achieved through the synthesis of assemblies/subassemblies across multiple domains. The “newly” synthesized product can then be incorporated into the dynamics of a closed-loop supply chain. The proposed methodology enables OEMs to not only offer refurbished products as part of their reverse logistics strategy, but also provide them with resynthesized product concepts that can be used to expand to new/emerging markets. The proposed methodology provides a general framework that includes OEMs (manufacturers of the original product), retailers (distributors of the original product and collectors of the EOL products) and third-party firms (managers of the EOL products) as part of a closed-loop supply chain strategy. The proposed methodology is compared with the existing methodologies in the literature wherein a third-party supplies the OEM only with refurbished products and supplies products unsuitable for refurbishing to another firm(s) for recycling/disposal. A case study involving a multi-product electronics manufacturer is presented to demonstrate the feasibility of the proposed methodology.


Author(s):  
William Z. Bernstein ◽  
Devarajan Ramanujan ◽  
Fu Zhao ◽  
Karthik Ramani

The recent proliferation of electronic products has led to a strong unmet need for understanding environmental implications of new technologies. According to Nielsen, 66% of Americans ages 24–35 own a smartphone, providing strong evidence that this technology can be considered ubiquitous. However, a majority of users and service providers are not sensitive to energy implications of data usage. As parameters affecting data delivery and usage are primarily driven by user behavior, this study is focused on using empirical data to investigate its correspondence to energy footprint. A large cohort of smartphone users (n = 21,853) and the means for which data is accessed, i.e. via 3G/LTE or WiFi, is examined to develop a model for estimating the energy cost of the various modes of data usage. Finally, alternate business scenarios are developed through simulating behavior change in cohorts based on existing data and then assessed with regards to economic and environmental efficiencies.


Author(s):  
Qingjin Peng ◽  
Arash Hosseinpour ◽  
Peihua Gu ◽  
Zhun Fan

Sustainable product design plans the entire life cycle of a product from its raw material selection, conceptual and structural formation, manufacturing processing, and usage to its end-of-life, reuse, and recycle. The product design needs the sustainable knowledge and proper tools. Current computer-aided design systems are insufficient to represent complex relationships of product functions, structures and life cycle options. It is required for design tools to support product life cycle planning with multi-objective optimal solutions. In this paper, our experience in design of a wheelchair is used as an example to discuss the need of design tools. The aim is to define ideal tools for design of sustainable products.


Author(s):  
Mario Covarrubias ◽  
Monica Bordegoni ◽  
Umberto Cugini

The paper describes the results of a research activity on the design of a positioning system which includes both a physical 3-DOF and virtual platforms which carries out a Desktop Haptic Interface (DHI). The positioning system allows the user to interact with a virtual shape through a combination of linear and rotation motions, some of them driven by the user and some driven by the virtual shape. On the other hand, by rendering a physical 2D cross-section through the DHI permits the assessment of virtual prototypes of industrial products with aesthetic value. Typically, virtual objects are modified several times before reaching the desired design, increasing the development time and, consequently, the final product cost. The desktop haptic system (which includes the positioning system and the DHI) that we propose here, will reduce the number of physical mockups during the design process allowing designers to perform several phases of the product design process continuously and without any interruption. In particular the system is developed with the aim of supporting designers during the evaluation of the aesthetic quality of a virtual product.


Author(s):  
Yusuke Kurita ◽  
Koji Kimita ◽  
Kentaro Watanabe ◽  
Yoshiki Shimomura

Recently, service has been recognized as an effective means to enhance customer satisfaction. The importance of service is widely accepted. Based on this background, the authors of this paper have conducted conceptual research on service design from the engineering perspective. This research series is called “Service Engineering.” In order to achieve a successful service, service providers should maintain service quality and always satisfy their customers. To be specific, the provision of highly reliable service is essential for service providers to survive in their target market. To realize highly reliable products or services, in general, it is an effective approach to prevent failures from occurring in the use phase. In this study, we aim to support service failure analysis in order to minimize the occurrence of failures. This paper proposes a method for analyzing service failure effects in the service design phase. Specifically, we define service failure and propose a procedure to analyze service failure effects with models that are proposed in Service Engineering. The proposed method is verified through its application to a practical case.


Sign in / Sign up

Export Citation Format

Share Document