scholarly journals Improved Pedestrian Safety at Signalized Intersections Operating the Flashing Yellow Arrow

Author(s):  
David Hurwitz
Author(s):  
Masoud Ghodrat Abadi ◽  
David S. Hurwitz

Conflict between bicycles and right-turning vehicles on the approach to signalized intersections is a critical safety concern. To understand the operational implications of protected-permitted right-turn signal indications in conjunction with pavement markings on bicyclist performance, a full-scale bicycling simulator experiment was performed. Velocity and lateral position of bicyclists were evaluated during conflicts between bicycles and right-turning vehicles. A mixed factorial design was considered. Two within-subject factors were analyzed: the signal indication for right-turning vehicles with five levels (circular red, circular green, solid red arrow, solid green arrow, and flashing yellow arrow), and the pavement markings in the conflict area with two levels (white lane markings with no supplemental pavement color and white lane markings with solid green pavement applied in the conflict area). Additionally, the influence of gender as a between-subject variable was considered. Forty-eight participants (24 female) completed the experiment. Signal indications and pavement markings had statistically significant effects on bicyclist velocity and lateral position, but these effects varied at different factor levels. Additionally, during the conflicts, male participants were found to have higher velocity than female participants. This difference was not influenced by engineering treatments. The results provide guidance to transportation professionals about how traffic control devices could be applied to conflict areas on the approach to signalized intersections.


Author(s):  
Raghavan Srinivasan ◽  
Bo Lan ◽  
Daniel Carter ◽  
Sarah Smith ◽  
Kari Signor

This paper presents the results of an evaluation of the flashing yellow arrow (FYA) treatment using data from signalized intersections in Nevada, North Carolina, Oklahoma, and Oregon. The evaluation method was an empirical Bayes before–after analysis. The treatments were divided into seven categories depending on the phasing system in the before period (permissive, protected–permissive, or protected), phasing system in the after period (FYA permissive or FYA protected–permissive), the number of roads where the FYA was implemented (one road or both roads), and the number of legs at the intersections (three or four). The first five treatment categories involved permissive or protected–permissive phasing in the before period. Intersections in these five treatment categories experienced a reduction in the primary target crashes under consideration: left turn crashes and left turn with opposing through crashes. The reduction ranged from 15% to 50%, depending on the treatment category. Intersections that had at least one protected left turn phase in the before period and had FYA protected–permissive left turn phase in the after period experienced an increase in left turn crashes and left turn with opposing through crashes, indicating that replacing a fully protected left turn with FYA will likely cause an increase in left turn crashes.


Author(s):  
Daniel J. Cook

Dallas phasing is an effective strategy for increasing the efficiency of protected-permissive left turns (PPLTs) at signalized intersections, without creating left-turn traps. The flashing yellow arrow (FYA) is the most widely used PPLT signal indication when Dallas phasing is utilized. The Highway Capacity Manual (HCM) signalized intersection methodology currently contains guidance on how to handle PPLTs with Dallas phasing. At intersections with the FYA indication, some agencies have been using a feature known as FYA delay, which delays the FYA indication, usually by 1 to 4 s. More recently, some agencies have also began using another feature, which suppresses the FYA when a conflicting pedestrian phase is active. The HCM does not contain guidance on how to handle FYA delay or suppression. This research proposed modifications to the HCM signalized intersection methodology to address these two FYA strategies. A sensitivity analysis was conducted to check the reasonableness of the proposed modifications. The sensitivity analysis showed that the proposed modifications are reasonable and produced the expected results.


2015 ◽  
Vol 75 ◽  
pp. 252-263 ◽  
Author(s):  
Kerrie L. Schattler ◽  
Cody J. Gulla ◽  
Travis J. Wallenfang ◽  
Beau A. Burdett ◽  
Jessica A. Lund

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Cheng ◽  
Ning Zhang ◽  
Wei Li ◽  
Jianfeng Xi

Traffic conflict between turning vehicles and pedestrians is the leading cause of pedestrian fatalities at signalized intersections. In order to provide a solution for evaluating intersection safety for vulnerable road users, this paper first determines the most important factors in analyzing pedestrian-vehicle conflict and puts forward a pedestrian safety conflict index (SCI) model to establish a quantitative standard for safety evaluation of two- or multiphase intersections. A safety level system is then designed based on SCI to help categorize and describe the safety condition of intersections applicable to the model. Finally, the SCI model is applied to the evaluation of two intersections in the city of Changchun, the result of which complies with expectation, indicating the model’s potential in providing an improved approach for pedestrian-vehicle conflict evaluation study.


Transport ◽  
2020 ◽  
Vol 35 (1) ◽  
pp. 48-56
Author(s):  
Sankaran Marisamynathan ◽  
Perumal Vedagiri

The large proportions of pedestrian fatalities led researchers to make the improvements of pedestrian safety at intersections. Thus, this paper proposes a methodology to evaluate crosswalk safety at signalized intersections using Surrogate Safety Measures (SSM) under mixed traffic conditions. The required pedestrian, traffic, and geometric data were extracted based on the videographic survey conducted at signalized intersections in Mumbai (India). Post Encroachment Time (PET) for each pedestrian were segregated into three categories for estimating pedestrian–vehicle interactions and Cumulative Frequency Distribution (CDF) was plotted to calculate the threshold values for each interaction severity level. The Cumulative Logistic Regression (CLR) model was developed to predict the pedestrian mean PET values in the cross-walk at signalized intersections. The proposed model was validated with a new signalized intersection and the results were shown that the proposed PET ranges and model appropriate for Indian mixed traffic conditions. To assess the suitability of model framework, model transferability was carried out with data collected at signalized intersection in Kolkata (India). Finally, this study can be helpful to rank the severity level of pedestrian safety in the crosswalk and improve the existing facilities at signalized intersections.


Sign in / Sign up

Export Citation Format

Share Document