scholarly journals Visual vertigo treatment through optokinetic stimulation with stationary anchoring

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chih-Pei Chang ◽  
Timothy C. Hain
Author(s):  
Alaa El-sayed Mandour ◽  
Amani Mohamed El-Gharib ◽  
Afaf Ahmad Emara ◽  
Trandil Hassan Elmahallawy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seo-Young Choi ◽  
Jae-Hwan Choi ◽  
Eun Hye Oh ◽  
Se-Joon Oh ◽  
Kwang-Dong Choi

AbstractTo determine the effect of customized vestibular exercise (VE) and optokinetic stimulation (OS) using a virtual reality system in patients with persistent postural-perceptual dizziness (PPPD). Patients diagnosed with PPPD were randomly assigned to the VE group or VE with OS group. All participants received VE for 20 min using a virtual reality system with a head mount display once a week for 4 weeks. The patients in the VE with OS group additionally received OS for 9 min. We analysed the questionnaires, timed up-to-go (TUG) test, and posturography scores at baseline and after 4 weeks. A total of 28 patients (median age = 74.5, IQR 66–78, men = 12) completed the intervention. From baseline to 4 weeks, the dizziness handicap inventory, activities of daily living (ADL), visual vertigo analogue scale, and TUG improved in the VE group, but only ADL and TUG improved in the VE with OS group. Patients with severe visual vertigo improved more on their symptoms than patients with lesser visual vertigo (Pearson’s p = 0.716, p < 0.001). Our VE program can improve dizziness, quality of life, and gait function in PPPD; however, additional optokinetic stimuli should be applied for individuals with visual vertigo symptoms.


Background: Binasal Occlusion (BNO) is a clinical technique used by many neurorehabilitative optometrists in patients with mild traumatic brain injury (mTBI) and increased visual motion sensitivity (VMS) or visual vertigo. BNO is a technique in which partial occluders are added to the spectacle lenses to suppress the abnormal peripheral visual motion information. This technique helps in reducing VMS symptoms (i.e., nausea, dizziness, balance difficulty, visual confusion). Case Report: A 44-year-old AA female presented for a routine eye exam with a history of mTBI approximately 33 years ago. She was suffering from severe dizziness for the last two years that was adversely impacting her ADLs. The dizziness occurred in all body positions and all environments throughout the day. She was diagnosed with vestibular hypofunction and had undergone vestibular therapy but reported little improvement. Neurological exam revealed dizziness with both OKN drum and hand movement, especially in the left visual field. BNO technique resulted in immediate relief of her dizziness symptoms. Conclusion: To our knowledge, this is the first case that illustrates how the BNO technique in isolation can be beneficial for patients with mTBI and vestibular hypofunction. It demonstrates the success that BNO has in filtering abnormal peripheral visual motion in these patients.


Cephalalgia ◽  
2002 ◽  
Vol 22 (2) ◽  
pp. 117-124 ◽  
Author(s):  
PD Drummond

The aim of this study was to determine whether scalp tenderness and photophobia, two well-recognized symptoms of migraine, develop during the motion sickness induced by optokinetic stimulation. To investigate whether motion sickness has a general influence on pain perception, pain was also assessed in the fingertips. After optokinetic stimulation, nausea increased more and headache persisted longer in 21 migraine sufferers than in 15 non-headache controls. Scalp tenderness increased during optokinetic stimulation in nauseated subjects, and pain in the fingertips increased more and photophobia persisted longer in migraine sufferers than controls. These findings suggest that the disturbance responsible for nausea also sensitizes trigeminal nociceptive neurones or releases inhibitory controls on their discharge. A low nausea threshold and a propensity for sensitization to develop rapidly in nociceptive pathways may increase susceptibility to migraine.


1995 ◽  
Vol 115 (sup520) ◽  
pp. 419-422 ◽  
Author(s):  
Toshihiro Tsuzuku ◽  
Elisabeth Vitte ◽  
Alain Sémont ◽  
Alain Berthoz

2020 ◽  
Vol 71 (5) ◽  
pp. 289-295
Author(s):  
Daniel Héctor Verdecchia ◽  
Daniel Hernandez ◽  
Mauro Federico Andreu ◽  
Sandra Salzberg

2003 ◽  
Vol 89 (1) ◽  
pp. 390-400 ◽  
Author(s):  
L. H. Zupan ◽  
D. M. Merfeld

Sensory systems often provide ambiguous information. For example, otolith organs measure gravito-inertial force (GIF), the sum of gravitational force and inertial force due to linear acceleration. However, according to Einstein's equivalence principle, a change in gravitational force due to tilt is indistinguishable from a change in inertial force due to translation. Therefore the central nervous system (CNS) must use other sensory cues to distinguish tilt from translation. For example, the CNS might use dynamic visual cues indicating rotation to help determine the orientation of gravity (tilt). This, in turn, might influence the neural processes that estimate linear acceleration, since the CNS might estimate gravity and linear acceleration such that the difference between these estimates matches the measured GIF. Depending on specific sensory information inflow, inaccurate estimates of gravity and linear acceleration can occur. Specifically, we predict that illusory tilt caused by roll optokinetic cues should lead to a horizontal vestibuloocular reflex compensatory for an interaural estimate of linear acceleration, even in the absence of actual linear acceleration. To investigate these predictions, we measured eye movements binocularly using infrared video methods in 17 subjects during and after optokinetic stimulation about the subject's nasooccipital (roll) axis (60°/s, clockwise or counterclockwise). The optokinetic stimulation was applied for 60 s followed by 30 s in darkness. We simultaneously measured subjective roll tilt using a somatosensory bar. Each subject was tested in three different orientations: upright, pitched forward 10°, and pitched backward 10°. Five subjects reported significant subjective roll tilt (>10°) in directions consistent with the direction of the optokinetic stimulation. In addition to torsional optokinetic nystagmus and afternystagmus, we measured a horizontal nystagmus to the right during and following clockwise (CW) stimulation and to the left during and following counterclockwise (CCW) stimulation. These measurements match predictions that subjective tilt in the absence of real tilt should induce a nonzero estimate of interaural linear acceleration and, therefore, a horizontal eye response. Furthermore, as predicted, the horizontal response in the dark was larger for Tilters ( n = 5) than for Non-Tilters ( n= 12).


2015 ◽  
Vol 20 (03) ◽  
pp. 241-243 ◽  
Author(s):  
Adriana Silva ◽  
Maristela Ferreira ◽  
Andrea Manso ◽  
Maurício Ganança ◽  
Heloisa Caovilla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document