scholarly journals LIMIT OPERATION IN PROJECTIVE SPACE FOR CONSTRUCTING NECESSARY OPTIMALITY CONDITION OF POLYNOMIAL OPTIMIZATION PROBLEM

2020 ◽  
Vol 63 (4) ◽  
pp. 114-133
Author(s):  
Tomoyuki Iori ◽  
Toshiyuki Ohtsuka
Author(s):  
Dan Li ◽  
Yang Wang

This research investigates the application of sum-of-squares (SOS) optimization method on finite element model updating through minimization of modal dynamic residuals. The modal dynamic residual formulation usually leads to a nonconvex polynomial optimization problem, the global optimality of which cannot be guaranteed by most off-the-shelf optimization solvers. The SOS optimization method can recast a nonconvex polynomial optimization problem into a convex semidefinite programming (SDP) problem. However, the size of the SDP problem can grow very large, sometimes with hundreds of thousands of variables. To improve the computation efficiency, this study exploits the sparsity in SOS optimization to significantly reduce the size of the SDP problem. A numerical example is provided to validate the proposed method.


2020 ◽  
Vol 16 (1) ◽  
pp. 55-70
Author(s):  
Gaoxi Li ◽  
◽  
Zhongping Wan ◽  
Jia-wei Chen ◽  
Xiaoke Zhao ◽  
...  

2015 ◽  
Vol 7 (2) ◽  
pp. 175 ◽  
Author(s):  
Shuquan Wang

In this paper, we propose a shifted power method for a type of polynomial optimization problem over unit spheres. The global convergence of the proposed method is established and an easily implemented scope of the shifted parameter is provided.


Author(s):  
María López Quijorna

AbstractA basic closed semialgebraic subset of $${\mathbb {R}}^{n}$$ R n is defined by simultaneous polynomial inequalities $$p_{1}\ge 0,\ldots ,p_{m}\ge 0$$ p 1 ≥ 0 , … , p m ≥ 0 . We consider Lasserre’s relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation to be the optimal value of the polynomial optimization problem. This certificate is to check if a certain matrix has a generalized Hankel form. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have detected optimality we will extract the potential minimizers with a truncated version of the Gelfand–Naimark–Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will enable us to prove, with the use of the GNS truncated construction, a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existence of a Gaussian quadrature rule if the modified optimal solution is a generalized Hankel matrix . At the end, we provide a numerical linear algebraic algorithm for detecting optimality and extracting solutions of a polynomial optimization problem.


Author(s):  
Andrzej Myśliński

Topology optimization of quasistatic contact problemsThis paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied by the body in unilateral contact with the rigid foundation to obtain the optimally shaped domain for which the normal contact stress along the contact boundary is minimized. The volume of the body is assumed to be bounded. Using the material derivative and asymptotic expansion methods as well as the results concerning the differentiability of solutions to quasistatic variational inequalities, the topological derivative of the shape functional is calculated and a necessary optimality condition is formulated.


2018 ◽  
Vol 68 (2) ◽  
pp. 421-430
Author(s):  
Karel Pastor

Abstract In our paper we will continue the comparison which was started by Vsevolod I. Ivanov [Nonlinear Analysis 125 (2015), 270–289], where he compared scalar optimality conditions stated in terms of Hadamard derivatives for arbitrary functions and those which was stated for ℓ-stable functions in terms of Dini derivatives. We will study the vector optimization problem and we show that also in this case the optimality condition stated in terms of Hadamard derivatives is more advantageous.


Author(s):  
Guolin Yu ◽  
Siqi Li ◽  
Xiao Pan ◽  
Wenyan Han

This paper is devoted to the investigation of optimality conditions for approximate quasi-weakly efficient solutions to a class of nonsmooth Vector Equilibrium Problem (VEP) via convexificators. First, a necessary optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is presented by making use of the properties of convexificators. Second, the notion of approximate pseudoconvex function in the form of convexificators is introduced, and its existence is verified by a concrete example. Under the introduced generalized convexity assumption, a sufficient optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is also established. Finally, a scalar characterization for approximate quasi-weakly efficient solutions to problem (VEP) is obtained by taking advantage of Tammer’s function.


Sign in / Sign up

Export Citation Format

Share Document