Modeling of the Bonding Quality Within a Multilayer Structure Using the Ultrasonic Reflection Technique

Author(s):  
Idris Aboudaoud ◽  
Brahim Irissi ◽  
Bouazza Faiz ◽  
Driss Izbaim ◽  
El Houssaine Ouacha ◽  
...  
2009 ◽  
Vol 413-414 ◽  
pp. 767-774 ◽  
Author(s):  
Xin Long Chang ◽  
Tao Ni ◽  
Chunan Ai

With increasing application of adhesive bonding structures, the quality assessment of adhesive bonding became critical. Ultrasonic approach was an acknowledged promising method in many Nondestructive testing (NDT) techniques. The research object was to use analytical models to develop a quantitative understanding of the affections in different situations on the dispersion properties. An improved global matrix method was introduced to compute the dispersive curves, which can effectively eliminate the instability for thicker layers and higher frequencies. In order to evaluate the disbond defect, the cohesive strength degradation mode and the spring mode were then adopted to describe the cohesive failure and the interface failure, respectively. In the paper, cohesive failure, interface failure and mixed failure were analyzed for the steel/adhesive layer/insulation layered structure. Interface failure induced the modes of multilayer structure to regress to the modes of single layers, while the cohesive failure made the dispersive curves move to the lower frequency direction, and changing the relative position of spring layer led the dispersive curves shift to the higher frequency direction. Among all the factors, the interface failure was dominant. Finally, the variety of the dispersive modes in a special frequency band (1~1.5MHz) was found that can be regarded as parameters of the adhesive bonding quality.


2015 ◽  
Vol 60 (6) ◽  
pp. 511-520 ◽  
Author(s):  
A.A. Efremov ◽  
◽  
V.G. Litovchenko ◽  
V.P. Melnik ◽  
O.S. Oberemok ◽  
...  

2020 ◽  
Vol 35 (1) ◽  
pp. 58-69
Author(s):  
P. Pongmuksuwan ◽  
W. Harnnarongchai
Keyword(s):  

2020 ◽  
Vol 982 ◽  
pp. 121-127
Author(s):  
Shuo Li ◽  
Qing Dong Zhang

A cylindrical indenter was designed to simulate the roller and 304 stainless steel / Q235A carbon steel plate with different roughness were bonded together. The interfacial bonding behavior was investigated by SEM, ultrasonic “C” scanning detection and nanoindentation test. The result reveal that with the increase of contact pressure between interfaces, the atoms of dissimilar metals begin to diffuse across interfaces in some regions, then form island-like bonding regions, and eventually extend to the whole interface. There are no obvious cracks on the surface of stainless steel and carbon steel after deformation. The cold roll-bonding mechanism of stainless steel and carbon steel is that elements on both sides of the interface diffuse and form a shallow diffusion layer under pressure to ensure the joint strength, and the joint bonding strength is greater than the strength of carbon steel matrix. In addition, the surface morphology of base metal has a great influence on the interfacial bonding quality. The higher surface roughness values increases the hardening degree of rough peak, which makes real contact area difficult to increase and reduce the interfacial bonding quality.


Sign in / Sign up

Export Citation Format

Share Document