An Approximation Algorithm for the Maximum Induced Matching Problem on C5-Free Regular Graphs

Author(s):  
Yuichi ASAHIRO ◽  
Guohui LIN ◽  
Zhilong LIU ◽  
Eiji MIYANO
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yinglei Song

Abstract In this paper, we study the parameterized complexity of the induced matching problem in hamiltonian bipartite graphs and the inapproximability of the maximum induced matching problem in hamiltonian bipartite graphs. We show that, given a hamiltonian bipartite graph, the induced matching problem is W[1]-hard and cannot be solved in time n o ⁢ ( k ) {n^{o(\sqrt{k})}} , where n is the number of vertices in the graph, unless the 3SAT problem can be solved in subexponential time. In addition, we show that unless NP = P {\operatorname{NP}=\operatorname{P}} , a maximum induced matching in a hamiltonian bipartite graph cannot be approximated within a ratio of n 1 / 4 - ϵ {n^{1/4-\epsilon}} , where n is the number of vertices in the graph.


2021 ◽  
Vol 182 (3) ◽  
pp. 257-283
Author(s):  
Viet Dung Nguyen ◽  
Ba Thai Pham ◽  
Phan Thuan Do

We first design an 𝒪(n2) solution for finding a maximum induced matching in permutation graphs given their permutation models, based on a dynamic programming algorithm with the aid of the sweep line technique. With the support of the disjoint-set data structure, we improve the complexity to 𝒪(m+n). Consequently, we extend this result to give an 𝒪(m+n) algorithm for the same problem in trapezoid graphs. By combining our algorithms with the current best graph identification algorithms, we can solve the MIM problem in permutation and trapezoid graphs in linear and 𝒪(n2) time, respectively. Our results are far better than the best known 𝒪(mn) algorithm for the maximum induced matching problem in both graph classes, which was proposed by Habib et al.


2012 ◽  
Vol 160 (3) ◽  
pp. 224-230 ◽  
Author(s):  
Chandra Mohan Krishnamurthy ◽  
R. Sritharan

Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 173 ◽  
Author(s):  
Koichi Yamazaki

Wu et al. (2014) showed that under the small set expansion hypothesis (SSEH) there is no polynomial time approximation algorithm with any constant approximation factor for several graph width parameters, including tree-width, path-width, and cut-width (Wu et al. 2014). In this paper, we extend this line of research by exploring other graph width parameters: We obtain similar approximation hardness results under the SSEH for rank-width and maximum induced matching-width, while at the same time we show the approximation hardness of carving-width, clique-width, NLC-width, and boolean-width. We also give a simpler proof of the approximation hardness of tree-width, path-width, and cut-widththan that of Wu et al.


Sign in / Sign up

Export Citation Format

Share Document