scholarly journals Simple Oblivious Routing Method to Balance Load in Network-on-Chip

2021 ◽  
Vol E104.D (10) ◽  
pp. 1749-1752
Author(s):  
Jiao GUAN ◽  
Jueping CAI ◽  
Ruilian XIE ◽  
Yequn WANG ◽  
Jinzhi LAI
2016 ◽  
Vol 13 (10) ◽  
pp. 7592-7598
Author(s):  
J Kalaivani ◽  
B Vinayagasundaram

The Network-on-Chip (NoC) systems have emerged in on-chip communication architecture in various fields. To achieve excellent results in Network on Chip (NoC) systems application, the routing must eliminate the deadlock issues from the network. To overcome this issue in the network, in this paper, we propose Deadlock Free Load Balanced Adaptive Routing. In this approach, Oblivious Routing (OR) algorithm is implemented on the channel by using the probability function. The network considers the capacity of the node and tries to maximize the throughput based on the connectivity between the data packets flow and minimize the channel load. A Reconfiguration Protocol is used for the data packets to choose other channel in the network if the deadlock occurs. Simulation results show that this approach reduces the delay and packet loss in the network.


2017 ◽  
Vol E100.D (4) ◽  
pp. 910-913
Author(s):  
Ruilian XIE ◽  
Jueping CAI ◽  
Xin XIN ◽  
Bo YANG

2017 ◽  
Vol 26 (12) ◽  
pp. 1750200 ◽  
Author(s):  
Ruilian Xie ◽  
Jueping Cai ◽  
Peng Wang ◽  
Xin Zhang ◽  
Juan Wang

High reliability against undesirable effects is one of the key objectives in the design for Network-on-Chip (NoC). As a result, designing reliable and efficient routing method is highly desirable. This paper presents a novel turn model called NMad-y using one and two virtual channels along the [Formula: see text]- and [Formula: see text]-dimensions, respectively, and Adaptive and Fault-tolerant Routing Method (AFRM) which is designed based on the NMad-y turn model. AFRM can effectively tolerate multiple faulty routers and links in more complicated faulty situations by the link status of neighbor routers within two hops. AFRM is able to impose the reliability of network without losing the performance of network. Simulation results show that AFRM achieves better saturation throughput (0.83% on average) than a state-of-the-art fault-tolerant routing method and maintains high reliability of more than 97.43% on average.


Sign in / Sign up

Export Citation Format

Share Document