scholarly journals Acid-base balance in sheep with experimentally induced acute ruminal lactic acidosis

2017 ◽  
Vol 69 (3) ◽  
pp. 637-643 ◽  
Author(s):  
A.F. Sabes ◽  
A.M. Girardi ◽  
D. Zangirolami Filho ◽  
G.M. Bueno ◽  
J.A. Oliveira ◽  
...  

ABSTRACT This study aimed to investigate the changes in the acid-base balance of sheep with experimentally induced acute ruminal lactic acidosis (ARA). Ten ewes orally received 15 grams of sucrose per kilogram of body mass. Arterial blood samples for blood gas analysis were obtained at the following intervals: before the induction of ARA (control), and 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 48, 72, 96, 120 and 144 hours after sucrose administration. Urine samples for pH measurement were obtained at the following times: -15 days, -7 days, and immediately before sucrose administration, then at 24, 48, 72, 96, 120 and 144 hours. Thereafter, both blood and urine samples were obtained on the 2nd, 3rd, and 4th following weeks. From 4 hours after the induction, elevation of the pH, bicarbonate and base excess on the arterial blood was observed. After 12 hours, the animals showed a decrease of these parameters, as well as urine acidification, which are symptomatic of metabolic acidosis. Within 28 hours, all parameters were normalized except the base excess, which only returned to normal after 72 hours. Despite the occurrence of acidemia, there was no need for medication and no animals died.

2018 ◽  
Vol 34 (1-2) ◽  
pp. 38-43
Author(s):  
Sari Leyli Harahap ◽  
Chairul Adillah Harahap ◽  
Sri Sulastri ◽  
Chairul Yoel ◽  
Noersida Raid

We performed a prospective study on the association between acid-base balance and asphyxta based on Apgar scores in 45 newborn babies admitted to the Division of Perinatology, Pirngadi Hospital, Medan, from January 1 to February 28, 1993. Blood gas analysis was done on blood obtained from umbilical artery. Based on 1st and 5th minutes Apgar scores, 40 (88.9%) and 21 babies (46.7%}, respectively, had asphyxia. Relation to acid-base balance was determined with the sensitivity of the 5th minute Apgar score in predicting acidotic states. It was found that Apgar score had sensitivity of 57.7% and specificity of 68.4% in predicting the acidotic states. Apgar score of > 7 was unable to. exclude the possible acidosis in 45% of cases (negative predictive value 54.1%). Gestational age had no influence on Apgar Scores. Apgar score was more sensitive to eliminate suspected acidosis in term neonates than in preterms. We recommend to perform umbilical arterial blood gas analysis to determine acidotic state in high risk newborn infants.


2020 ◽  
Author(s):  
Joost Janssen ◽  
Joris M.K. van Fessem ◽  
Tijmen Ris ◽  
Robert Jan Stolker ◽  
Markus Klimek

Abstract Background: The superiority of either the traditional or Stewart based approach to acid-base balance has focused primarily on analyzing metabolic acidemia, with little attention given to patients with neutral pH. In this study, we evaluate metabolic disturbances in patients in the immediate postoperative period focusing on patients with neutral pH, while comparing the Stewart and traditional approach. Methods: We conducted a single center retrospective observational cohort study. Over a 17 month period, data on arterial blood gas analysis, electrolytes and albumin on the morning after surgery were retrieved from patients admitted to the postsurgical high dependency unit (HDU). Albumin corrected anion gap (AG), apparent (SIDa) and effective strong ion difference (SIDe) and strong ion gap (SIG) were calculated.Results: Out of 1207 HDU admissions, 400 cases had a complete set of laboratory-data including albumin of which 281 presented with neutral pH (7.35 ≤ pH ≤ 7.45), 64 with acidemia (pH < 7.35) and 55 with alkalemia (pH > 7.45). In pH neutral patients the following acidifying disturbances were found: SIDa was lowered in 101 (36%), SIG was raised in 60 (21%). Base excess (BE) was decreased in 16 (6%) and corrected AG raised in 107 (38%). The alkalizing effect of hypoalbuminemia was present in 137 (49%). Out of 134 cases with normal BE and corrected AG, SIDa was lowered in 58 (43%). Out of 136 cases with normal SIDa and SIG, none had lowered BE and 28 increased AG (21%). Length of stay was significantly longer in patients with hypoalbuminemia, lowered SIDa and increased corrected AG, but not decreased BE (Hypoalbuminemia: 16 days vs. 10 days, P < 0.001. Low SIDa: 15 days vs. 12 days, P = 0.015. Increased AG: 16 days vs. 11 days, P < 0.001. Low BE: 14 days vs. 13 days, P = 0.736).Conclusions: Metabolic disturbances, characterized mainly by the presence of lowered SIDa, increased AG and hypoalbuminemia, are frequent in our population with apparent neutral acid-base balance based on pH and base excess. These changes on the morning after surgery are associated with increased length of stay.


2020 ◽  
Author(s):  
Joost Janssen ◽  
Joris M.K. van Fessem ◽  
Tijmen Ris ◽  
Robert Jan Stolker ◽  
Markus Klimek

Abstract Background The superiority of either the traditional or Stewart based approach to acid-base balance has focused primarily on analyzing metabolic acidemia, with little attention given to patients with neutral pH. In this study, we evaluate metabolic disturbances in patients in the immediate postoperative period focusing on patients with neutral pH, while comparing the Stewart and traditional approach. Methods We conducted a single center retrospective observational cohort study. Over a 17 month period, data on arterial blood gas analysis, electrolytes and albumin on the morning after surgery were retrieved from patients admitted to the postsurgical high dependency unit (HDU). Albumin corrected anion gap (AG), apparent (SIDa) and effective strong ion difference (SIDe) and strong ion gap (SIG) were calculated. Results Out of 1207 HDU admissions, 400 cases had a complete set of laboratory-data including albumin of which 281 presented with neutral pH (7.35 ≤ pH ≤ 7.45), 64 with acidemia (pH < 7.35) and 55 with alkalemia (pH > 7.45). In pH neutral patients the following acidifying disturbances were found: SIDa was lowered in 101 (36%), SIG was raised in 60 (21%). Base excess (BE) was decreased in 16 (6%) and corrected AG raised in 107 (38%). The alkalizing effect of hypoalbuminemia was present in 137 (49%). Out of 134 cases with normal BE and corrected AG, SIDa was lowered in 58 (43%). Out of 136 cases with normal SIDa and SIG, none had lowered BE and 28 increased AG (21%). Length of stay was significantly longer in patients with hypoalbuminemia, lowered SIDa and increased corrected AG, but not decreased BE (Hypoalbuminemia: 16 days vs. 10 days, P < 0.001. Low SIDa: 15 days vs. 12 days, P = 0.015. Increased AG: 16 days vs. 11 days, P < 0.001. Low BE: 14 days vs. 13 days, P = 0.736). Conclusions Metabolic disturbances, characterized mainly by the presence of lowered SIDa, increased AG and hypoalbuminemia, are frequent in our population with apparent neutral acid-base balance based on pH and base excess. These changes on the morning after surgery are associated with increased length of stay.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Joost W. Janssen ◽  
Joris M. K. van Fessem ◽  
Tijmen Ris ◽  
Robert Jan Stolker ◽  
Markus Klimek

Abstract Background The superiority of either the traditional or Stewart based approach to acid-base balance has focused primarily on analyzing metabolic acidemia, with little attention given to patients with neutral pH. In this study, we evaluate metabolic disturbances in patients in the immediate postoperative period focusing on patients with neutral pH, while comparing the Stewart and traditional approach. Methods We conducted a single center retrospective observational cohort study. Over a 17-month period, data on arterial blood gas analysis, electrolytes, and albumin on the morning after surgery were retrieved from patients admitted to the postsurgical high dependency unit (HDU). Albumin-corrected anion gap (AG), apparent (SIDa) and effective strong ion difference (SIDe), and strong ion gap (SIG) were calculated. Results Out of 1207 HDU admissions, 400 cases had a complete set of laboratory-data including albumin of which 281 presented with neutral pH (7.35 ≤ pH ≤ 7.45), 64 with acidemia (pH < 7.35) and 55 with alkalemia (pH > 7.45). In pH neutral patients, the following acidifying disturbances were found: SIDa was lowered in 101 (36%), and SIG was raised in 60 (21%). Base excess (BE) was decreased in 16 (6%) and corrected AG raised in 107 (38%). The alkalizing effect of hypoalbuminemia was present in 137 (49%). Out of 134 cases with normal BE and corrected AG, SIDa was lowered in 58 (43%). Out of 136 cases with normal SIDa and SIG, none had lowered BE and 28 increased AG (21%). Length of stay was significantly longer in patients with hypoalbuminemia, lowered SIDa, and increased corrected AG, but not decreased BE (hypoalbuminemia: 16 days vs. 10 days, P < 0.001; low SIDa: 15 days vs. 12 days, P = 0.015; increased AG: 16 days vs. 11 days, P < 0.001; low BE: 14 days vs. 13 days, P = 0.736). Conclusions Metabolic disturbances, characterized mainly by the presence of lowered SIDa, increased AG, and hypoalbuminemia, are frequent in our population with apparent neutral acid-base balance based on pH and base excess. These changes on the morning after surgery are associated with increased length of stay.


1994 ◽  
Vol 77 (5) ◽  
pp. 2318-2324 ◽  
Author(s):  
S. M. Torrance ◽  
C. Wittnich

This study examines the neonatal response to graded hypoxia and determines the arterial PO2 (PaO2) threshold for oxygen-restricted metabolism as confirmed by the development of lactic acidosis and altered oxygen handling. Anesthetized, intubated, and ventilated 3-day-old pigs (n = 56) were randomly assigned to one of five predetermined acute (120 min) graded hypoxia groups: normoxia (PaO2 = 80 Torr) or mild (60 Torr), moderate (40 Torr), moderately severe (30 Torr), or severe (20 Torr) hypoxia. In moderate hypoxia, lactate and acid-base homeostasis were unaltered due to a significant increase in oxygen extraction (P < 0.05) that was sufficient to maintain the arteriovenous oxygen content difference (oxygen uptake). In moderately severe hypoxia, increased arterial lactate and decreased HCO3- and base excess were evidence of anaerobic metabolism, yet pH was unaltered, indicating adequate buffering. In this group, despite the increase in oxygen extraction, oxygen uptake was reduced, indicating the onset of oxygen-restricted metabolism. The severe hypoxia group had significantly increased lactate (21.7 +/- 3.9 mmol/l), decreased pH (7.01 +/- 0.07) and base excess (-21.5 +/- 3.0 mmol/l), and depletion of HCO3- (9.7 +/- 1.6 mmol/l) (P < 0.0001). Here, increases in oxygen extraction were severely limited by availability, resulting in significantly reduced oxygen uptake, anaerobic metabolism, and profound lactic acidosis.


Author(s):  
Felice Eugenio Agrò ◽  
Marialuisa Vennari ◽  
Maria Benedetto

Sign in / Sign up

Export Citation Format

Share Document