Positioning Analysis of HF Monopole Antennas on a Frigate

Author(s):  
F. C. S. Assumpção ◽  
M. H. C. Dias
2018 ◽  
Vol 77 (17) ◽  
pp. 1485-1495
Author(s):  
S. A. Pogarsky ◽  
Leonid M. Lytvynenko ◽  
D. V. Mayboroda ◽  
A. V. Poznyakov

1991 ◽  
Vol 27 (19) ◽  
pp. 1781
Author(s):  
H. Nakano ◽  
N. Chiba ◽  
J. Yamauchi

2019 ◽  
Vol 11 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Ziyu Xu ◽  
Qisheng Zhang ◽  
Linyan Guo

AbstractA printed multiband Multi-Input Multiple-Output (MIMO) antenna is proposed in this paper. This MIMO antenna system comprises two symmetric printed monopole antennas. Each antenna element consists of multiple bend lines, producing four resonant modes and covering the GSM900, PCS, LTE2300, and 5G bands. Simulated and measured results prove that the proposed MIMO antenna can be applied to traditional 2G, 3G, 4G, and present 5G mobile communication. By etching four inverted L-shaped grooves on its ground plate, mutual coupling between the adjacent antenna elements has been suppressed. This makes the |S21| at all four resonant modes is lower than −40 dB. In addition, its low coupling mechanism has been analyzed by surface current distribution. The designed multiband MIMO antenna provides an idea of reference to realize low mutual coupling between antenna elements, which is also realizable in infrared or optical regimes with appropriate designs.


2001 ◽  
Vol 49 (3) ◽  
pp. 565-568 ◽  
Author(s):  
S. Karode ◽  
V. Fusco
Keyword(s):  

2015 ◽  
Vol 58 (2) ◽  
pp. 257-261 ◽  
Author(s):  
Goksenin Bozdag ◽  
Alp Kustepeli
Keyword(s):  
X Band ◽  

2002 ◽  
Vol 38 (16) ◽  
pp. 849 ◽  
Author(s):  
H. Xin ◽  
K. Matsugatani ◽  
M. Kim ◽  
J. Hacker ◽  
J.A. Higgins ◽  
...  

1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265 ◽  
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


Sign in / Sign up

Export Citation Format

Share Document