scholarly journals A note on the connectedness locus of the families of polynomials Pc(z)=z n - cz n-j

2012 ◽  
Vol 84 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Carlos Arteaga ◽  
Alexandre Alves
Keyword(s):  
2000 ◽  
Vol 142 (3) ◽  
pp. 605-629 ◽  
Author(s):  
Jacek Graczyk ◽  
Grzegorz Świątek

Author(s):  
John Hamal Hubbard ◽  
Dierk Schleicher

This chapter proves that the tricorn is not locally connected and not even pathwise connected, confirming an observation of John Milnor from 1992. The tricorn is the connectedness locus in the space of antiholomorphic quadratic polynomials z ↦ ̄z² + c. The chapter extends this discussion more generally for antiholomorphic unicritical polynomials of degrees d ≥ 2 and their connectedness loci, known as multicorns. The multicorn M*subscript d is the connectedness locus in the space of antiholomorphic unicritical polynomials psubscript c(z) = ̄zsubscript d + c of degree d, i.e., the set of parameters for which the Julia set is connected. The special case d = 2 is the tricorn, which is the formal antiholomorphic analog to the Mandelbrot set.


2010 ◽  
Vol 20 (12) ◽  
pp. 4119-4125
Author(s):  
HISASHI ISHIDA ◽  
TSUYOSHI ITOH

Sun and Yin [2007] had presented a precise description of the connectedness locus of the family of real biquadratic polynomials {pa,b(z) = (z2 + a)2 + b}. We shall first give an elementary proof of their result. Second, we shall give a precise description of the sets of parameters (a, b) such that the family {pa,b} has attracting fixed points.


2019 ◽  
Vol 220 (1) ◽  
pp. 185-210
Author(s):  
Shaun Bullett ◽  
Luna Lomonaco

Abstract In 1994 S. Bullett and C. Penrose introduced the one complex parameter family of (2 : 2) holomorphic correspondences $$\mathcal {F}_a$$Fa: $$\begin{aligned} \left( \frac{aw-1}{w-1}\right) ^2+\left( \frac{aw-1}{w-1}\right) \left( \frac{az+1}{z+1}\right) +\left( \frac{az+1}{z+1}\right) ^2=3 \end{aligned}$$aw-1w-12+aw-1w-1az+1z+1+az+1z+12=3and proved that for every value of $$a \in [4,7] \subset \mathbb {R}$$a∈[4,7]⊂R the correspondence $$\mathcal {F}_a$$Fa is a mating between a quadratic polynomial $$Q_c(z)=z^2+c,\,\,c \in \mathbb {R}$$Qc(z)=z2+c,c∈R, and the modular group $$\varGamma =PSL(2,\mathbb {Z})$$Γ=PSL(2,Z). They conjectured that this is the case for every member of the family $$\mathcal {F}_a$$Fa which has a in the connectedness locus. We show here that matings between the modular group and rational maps in the parabolic quadratic family $$Per_1(1)$$Per1(1) provide a better model: we prove that every member of the family $$\mathcal {F}_a$$Fa which has a in the connectedness locus is such a mating.


2007 ◽  
Vol 17 (11) ◽  
pp. 4219-4222 ◽  
Author(s):  
YESHUN SUN ◽  
YONGCHENG YIN

In this paper we present a precise description of the connectedness locus of the family of polynomials (z2 + x)2 + y, where x, y are real numbers.


2002 ◽  
Vol 12 (12) ◽  
pp. 2869-2883 ◽  
Author(s):  
PATRICIA DOMÍNGUEZ ◽  
GUILLERMO SIENRA

This paper studies the dynamics of the family λ sin z for some values of λ. First we give a description of the Fatou set for values of λ inside the unit disc. Then for values of λ on the unit circle of parabolic type (λ = exp (i2πθ), θ = p/q, (p, q) = 1), we prove that if q is even, there is one q-cycle of Fatou components, if q is odd, there are two q cycles of Fatou components. Moreover the Fatou components of such cycles are bounded. For λ as above there exists a component Dq tangent to the unit disc at λ of a hyperbolic component. There are examples for λ such that the Julia set is the whole complex plane. Finally, we discuss the connectedness locus and the existence of buried components for the Julia set.


Sign in / Sign up

Export Citation Format

Share Document