q cycle
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Felix Buchert ◽  
Martin Scholz ◽  
Michael Hippler

The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent in stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.


2021 ◽  
Author(s):  
Justin Di Trani ◽  
Zhongle Liu ◽  
Luke Whitesell ◽  
Peter Brzezinski ◽  
Leah Cowen ◽  
...  

During cellular respiration, electron transfer between the integral membrane protein complexes of the electron transport chain is coupled to proton translocation across the inner mitochondrial membrane, which in turn powers synthesis of ATP and transmembrane transport processes. The homodimeric electron transport chain Complex III (CIII2) oxidizes ubiquinol (UQH2) to ubiquinone (UQ), transferring electrons to cytochrome c, and translocating protons through a mechanism known as the Q cycle. The Q cycle involves UQH2 oxidation and UQ reduction at two different sites within each CIII monomer, as well as movement of the head domain of the Rieske subunit. We used cryoEM to determine the structure of CIII2 from Candida albicans, revealing density for endogenous UQ in the structure and allowing us to directly visualize the continuum of conformations of the Rieske head domain. Analysis of these conformations does not indicate cooperativity in the position of the Rieske head domains or binding of ligands in the two CIIIs of the CIII2 dimer. CryoEM with the indazole derivative Inz-5, which inhibits fungal CIII2 and is fungicidal when administered with fungistatic azole drugs, showed that inhibition by Inz-5 alters the equilibrium of the Rieske head domain positions.


2020 ◽  
Author(s):  
Kelath Murali Manoj ◽  
Daniel Andrew Gideon ◽  
Abhinav Parashar

Quinones are found in the lipid-membranes of prokaryotes like E. coli and cyanobacteria, and are also abundant in eukaryotic mitochondria and chloroplasts. They are intricately involved in the reaction mechanism of redox phosphorylations. In the Mitchellian chemiosmotic school of thought, membrane-lodged quinones are perceived as highly mobile conveyors of two-electron equivalents from the first leg of Electron Transport Chain (ETC) to the ‘second pit-stop’ of Cytochrome bc1 or b6f complex (CBC), where they undergo a regenerative ‘Q-cycle’. In Manoj’s murburn mechanism, the membrane-lodged quinones are perceived as one- or two- electron donors/acceptors, enabling charge separation and the CBC resets a one-electron paradigm via ‘turbo logic’. Herein, we compare various purviews of the two mechanistic schools with respect to: constraints in mobility, protons’ availability, binding of quinones with proteins, structural features of the protein complexes, energetics of reaction, overall reaction logic, etc. From various perspectives, it is concluded that the chemiosmotic Q-cycle is an untenable hypothesis. We project the murburn proposal as one rooted in thermodynamics/kinetics and which provides tangible structure-function correlations for the roles of quinones, lipid membrane and associated proteins.


2020 ◽  
Vol 477 (9) ◽  
pp. 1631-1650 ◽  
Author(s):  
Felix Buchert ◽  
Laura Mosebach ◽  
Philipp Gäbelein ◽  
Michael Hippler

Proton gradient regulation 5 (PGR5) is involved in the control of photosynthetic electron transfer, but its mechanistic role is not yet clear. Several models have been proposed to explain phenotypes such as a diminished steady-state proton motive force (pmf) and increased photodamage of photosystem I (PSI). Playing a regulatory role in cyclic electron flow (CEF) around PSI, PGR5 contributes indirectly to PSI protection by enhancing photosynthetic control, which is a pH-dependent down-regulation of electron transfer at the cytochrome b6f complex (b6f). Here, we re-evaluated the role of PGR5 in the green alga Chlamydomonas reinhardtii and conclude that pgr5 possesses a dysfunctional b6f. Our data indicate that the b6f low-potential chain redox activity likely operated in two distinct modes — via the canonical Q cycle during linear electron flow and via an alternative Q cycle during CEF, which allowed efficient oxidation of the low-potential chain in the WT b6f. A switch between the two Q cycle modes was dependent on PGR5 and relied on unknown stromal electron carrier(s), which were a general requirement for b6f activity. In CEF-favoring conditions, the electron transfer bottleneck in pgr5 was the b6f, in which insufficient low-potential chain redox tuning might account for the mutant pmf phenotype. By attributing a ferredoxin-plastoquinone reductase activity to the b6f and investigating a PGR5 cysteine mutant, a current model of CEF is challenged.


Sign in / Sign up

Export Citation Format

Share Document