scholarly journals Mechanical responses of human hypothenar and calf muscles in normal and pathological states

1977 ◽  
Vol 35 (2) ◽  
pp. 119-128
Author(s):  
Roberto E. P. Sica

A study has been made of the isometric twitches of hypothenar and calf muscles in man. The twitch contraction time for hypothenar muscles ranged between 55 and 78 ms, while for the calf muscles it ranged between 90 and 125 ms. According to their speed of contractions the hypothenar muscles were considered belonging to the so called intermedious group while the calf muscles integrate the slow group. It has been also demonstrated that these techniques can successfully be applied to the investigation of several neuromuscular disorders.

2007 ◽  
Vol 103 (5) ◽  
pp. 1706-1714 ◽  
Author(s):  
Keith N. Bishop ◽  
J. Ross McClung ◽  
Stephen J. Goldberg ◽  
Mary S. Shall

The ferret has become a popular model for physiological and neurodevelopmental research in the visual system. We believed it important, therefore, to study extraocular whole muscle as well as single motor unit physiology in the ferret. Using extracellular stimulation, 62 individual motor units in the ferret abducens nucleus were evaluated for their contractile characteristics. Of these motor units, 56 innervated the lateral rectus (LR) muscle alone, while 6 were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch, tetanic peak force, and fatigue. The abducens nucleus motor units showed a twitch contraction time of 15.4 ms, a mean twitch tension of 30.2 mg, and an average fusion frequency of 154 Hz. Single-unit fatigue index averaged 0.634. Whole muscle twitch contraction time was 16.7 ms with a mean twitch tension of 3.32 g. The average fatigue index of whole muscle was 0.408. The abducens nucleus was examined with horseradish peroxidase conjugated with the subunit B of cholera toxin histochemistry and found to contain an average of 183 motoneurons. Samples of LR were found to contain an average of 4,687 fibers, indicating an LR innervation ratio of 25.6:1. Compared with cat and squirrel monkeys, the ferret LR motor units contract more slowly yet more powerfully. The functional visual requirements of the ferret may explain these fundamental differences.


1992 ◽  
Vol 67 (5) ◽  
pp. 1133-1145 ◽  
Author(s):  
S. R. Devasahayam ◽  
T. G. Sandercock

1. The force-velocity relationship of a motor unit can provide insight into the contractile proteins of its constituent fibers as well as fundamental information about the function and use of the motor unit. Although the force-velocity profiles of whole muscle and skinned mammalian fibers have been studied, technical difficulties have prevented similar studies on motor units. A technique is presented to directly measure the velocity of shortening of individual motor units from in vivo rat soleus muscle. 2. The soleus muscles of anesthetized rats were dissected free of surrounding tissue while their nerve and blood supplies were preserved. Both tendons were cut, and the distal tendon was attached to a servomechanism to control muscle length, whereas the proximal tendon was attached to a force transducer. Single motor units were stimulated via the ventral roots. 3. The major problem encountered in measuring the force-velocity profile of a motor unit was that the force from the large number of passive fibers and connective tissue in the soleus confounded the force produced by the small number of active fibers in the motor unit. This problem was minimized by measuring active motor unit tension during an isovelocity ramp. This allowed experimental measurement of the passive tension by shortening the muscle with an identical isovelocity ramp without, however, stimulating the motor unit. Active tension was estimated by subtracting the passive tension waveform from the waveform recorded when the motor unit was active. 4. The method substantially reduced the noise from the passive fibers; however, problems remained. The probable sources of error are discussed, with the most significant being the elasticity associated with the blood and nerve connections to surrounding tissue. The elasticity prevents uniform shortening velocities along the length of the active fibers, thereby introducing a systematic bias to measurements made at high velocities. These errors are most pronounced when the data are extrapolated to determine the maximum velocity of shortening (Vmax). Determination of velocity at peak power (Vpp) is a more robust measure; however, of the 34 motor units studied, only 19 exhibited a distinct peak in the power-force curve, indicating residual noise. 5. To assess the validity of using twitch contraction time as an index of the velocity of shortening, when possible, Vmax and Vpp of each motor unit were correlated with the inverse of its twitch contraction time. The correlation was poor (r less than 0.2), indicating that, although widely used, twitch contraction time is a poor index of contractile speed.


1989 ◽  
Vol 66 (6) ◽  
pp. 2725-2732 ◽  
Author(s):  
S. E. Alway ◽  
J. D. MacDougall ◽  
D. G. Sale

Ultrastructural and twitch contractile characteristics of the human triceps surae were determined in seven healthy but very sedentary subjects before and after 16 wk of unilateral isometric training at 100% maximal voluntary contraction. After training, twitch contraction time decreased by approximately 20%. One-half relaxation time, peak twitch torque, and percent fiber type in any of the muscles of the triceps surae complex were not changed by training. Type I and type II fiber areas increased in the soleus by approximately 30%, but only type II fibers showed an increased in area in the lateral gastrocnemius (40%). Despite such changes in fiber area, the volume density of the sarcoplasmic reticulum-transverse tubular (SR) network averaged 3.2 +/- 0.6 and 5.9 +/- 0.9% in type I and type II fibers, respectively, before and after training in the two heads of the gastrocnemius. Type I SR fraction increased to 3.5 +/- 1.2% after training in the soleus; however, correlations were not significant between the change in the volume density of SR and the change in twitch contraction time (R = 0.46, P = 0.45) or the change in one-half relaxation time (R = -0.68, P = 0.08). The results demonstrate that isometric training at 100% maximal voluntary contraction induced changes in twitch contraction time that were not directly related to changes in the volume density of SR in fibers of the triceps surae.


1981 ◽  
Vol 78 (3) ◽  
pp. 295-311 ◽  
Author(s):  
F Parmiggiani ◽  
R B Stein

The force produced by cat muscles over time with two stimuli separated by a short interval is approximately three times that produced by a twitch of cat muscles. This facilitation of force production by a second stimulus involves both increases in magnitude and duration of the contraction. Increased magnitude is relatively more important in the fast-twitch plantaris muscle, whereas increased duration is more important in the slow-twitch soleus muscle. The facilitation decays in an approximately exponential manner with the interval between stimuli, having a time constant between one and two times the twitch contraction time in different muscles. If a third stimulus is added, the greatest facilitation is seen at intervals longer than the twitch contraction time. The drug Dantrolene, which specifically reduces Ca++ release from the sarcoplasmic reticulum, eliminates the delayed peak in facilitation with three stimuli. Associated with the increases in force with one or more stimuli are increases in muscle stiffness, which can be measured with small, brief stretches and releases that do not alter the time-course of contraction. The stiffness of soleus muscle reaches a peak after the peak in force. The increasing stiffness of the muscle can considerably facilitate transmission of force generated internally, in addition to any facilitation arising from Ca++-release mechanisms.


1989 ◽  
Vol 256 (1) ◽  
pp. G100-G106
Author(s):  
K. Nakao ◽  
K. Kitamura ◽  
H. Kuriyama

Effects of prostaglandin E2, F2 alpha, and synthetic thromboxane A2 (PGE2, PGF2 alpha, and STA2, respectively) on electrical and mechanical responses of the rabbit cecum were investigated. Transmural electrical stimulation evoked an excitatory junction potential (EJP) and contraction, events that were inhibited by 1 microM atropine or 0.3 microM tetrodotoxin. Indomethacin (up to 30 microM) modified neither the membrane potential nor the muscle tone but did inhibit amplitudes of the EJP and the twitch contraction. In the presence of 30 microM indomethacin, PGE2 (below 1 nM) had no effect on the membrane potential or muscle tone, while PGE2 (above 10 nM) contracted the cecal tissues, without depolarization. PGE2 enhanced the twitch contraction and restored the EJP in the presence of 30 microM indomethacin. Acetylcholine (0.1-3 microM) depolarized the membrane, but in the presence of 30 microM indomethacin, this depolarization was inhibited. PGE2 (0.1-100 nM) prevented these inhibitory actions of indomethacin. PGF2 alpha (0.1-100 nM) had weaker actions than PGE2 while STA2 (0.1-100 nM) had no effect on muscarinic responses. Thus muscarinic responses are augmented by primary prostaglandins.


1997 ◽  
Vol 23 (6) ◽  
pp. 475-482 ◽  
Author(s):  
M. Olive ◽  
J. A. Martinez-Matos ◽  
P. Pirretas ◽  
M. Povedano ◽  
C. Navarro ◽  
...  

2006 ◽  
Vol 48 (10) ◽  
pp. 863
Author(s):  
Josef Finsterer ◽  
Claudia Stöllberger

Sign in / Sign up

Export Citation Format

Share Document