scholarly journals First parasitological study of the African clawed frog (Xenopus laevis, Amphibia) in Chile

2017 ◽  
Vol 26 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Cristóbal Castillo ◽  
Gabriel Lobos ◽  
Daniel González-Acuña ◽  
Lucila Moreno ◽  
Cynthya Elizabeth González ◽  
...  

Abstract Introduced species can arrive into new territories with parasites; however, these species are expected to face lower parasite richness than in their original regions. Both introduced hosts and parasites can affect native fauna. Since their release into the wild in Chile following laboratory use, Xenopus laevis Daudin, 1802 has widely spread throughout central Chile. The only pathogen described on the host is the fungus Batrachochytrium dendrobatidis Longcore, Pessier, Nichols, 1999; thus, this is the first parasitological study of this species in Chile. In 10 localities in central Chile, 179 specimens of X. laevis were captured and examined for parasites in the gastrointestinal tube, cavities, lungs, liver, and skin. Only nine specimens of the genus Contracaecum Railliet, Henry, 1912 were found in six specimens of X. laevis from a private dam in La Patagua. It is likely that these parasites originated from species of native birds. This is the first record of Contracaecum sp. in Chilean amphibians.

2010 ◽  
Vol 78 (9) ◽  
pp. 3981-3992 ◽  
Author(s):  
Jeremy P. Ramsey ◽  
Laura K. Reinert ◽  
Laura K. Harper ◽  
Douglas C. Woodhams ◽  
Louise A. Rollins-Smith

ABSTRACT Batrachochytrium dendrobatidis is a chytrid fungus that causes the lethal skin disease chytridiomycosis in amphibians. It is regarded as an emerging infectious disease affecting diverse amphibian populations in many parts of the world. Because there are few model amphibian species for immunological studies, little is known about immune defenses against B. dendrobatidis. We show here that the South African clawed frog, Xenopus laevis, is a suitable model for investigating immunity to this pathogen. After an experimental exposure, a mild infection developed over 20 to 30 days and declined by 45 days postexposure. Either purified antimicrobial peptides or mixtures of peptides in the skin mucus inhibited B. dendrobatidis growth in vitro. Skin peptide secretion was maximally induced by injection of norepinephrine, and this treatment resulted in sustained skin peptide depletion and increased susceptibility to infection. Sublethal X-irradiation of frogs decreased leukocyte numbers in the spleen and resulted in greater susceptibility to infection. Immunization against B. dendrobatidis induced elevated pathogen-specific IgM and IgY serum antibodies. Mucus secretions from X. laevis previously exposed to B. dendrobatidis contained significant amounts of IgM, IgY, and IgX antibodies that bind to B. dendrobatidis. These data strongly suggest that both innate and adaptive immune defenses are involved in the resistance of X. laevis to lethal B. dendrobatidis infections.


2007 ◽  
Vol 292 (5) ◽  
pp. R1916-R1925 ◽  
Author(s):  
Monika Sundqvist

Little is known about the purinergic regulation of intestinal motor activity in amphibians. Purinergic control of intestinal motility is subject to changes during development in mammals. The aim of this study was to investigate purinergic control of intestinal smooth muscle in the amphibian Xenopus laevis and explore possible changes in this system during the developmental phase of metamorphosis. Effects of purinergic compounds on mean force and contraction frequency in intestinal circular muscle strips from prometamorphic, metamorphic, and juvenile animals were investigated. Before metamorphosis, low concentrations of ATP reduced motor activity, whereas the effects were reversed at higher concentrations. ATP-induced relaxation was not inhibited by the P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) but was blocked by the ecto-nucleotidase inhibitor 6- N, N-diethyl-d-β,γ-dibromomethylene ATP ( ARL67256 ), indicating that an ATP-derived metabolite mediated the relaxation response at this stage. Adenosine induced relaxation before, during, and after metamorphosis, which was blocked by the A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The stable ATP-analog adenosine 5′-[γ-thio]-triphosphate (ATPγS) and 2-methylthioATP (2-MeSATP) elicited contractions in the circular muscle strips in prometamorphic tadpoles. However, in juvenile froglets, 2-MeSATP caused relaxation, as did ATPγS at low concentrations. The P2Y11/P2X1-receptor antagonist NF157 antagonized the ATPγS-induced relaxation. The P2X-preferring agonist α-β-methyleneadenosine 5′-triphosphate (α-β-MeATP) evoked PPADS-sensitive increases in mean force at all stages investigated. This study demonstrates the existence of an adenosine A1-like receptor mediating relaxation and a P2X-like receptor mediating contraction in the X. laevis gut before, during, and after metamorphosis. Furthermore, the development of a P2Y11-like receptor-mediated relaxation during metamorphosis is shown.


2008 ◽  
Vol 23 (1) ◽  
pp. 131-144 ◽  
Author(s):  
Chun-Sik Yoon ◽  
Jung-Hyo Jin ◽  
Joo-Hung Park ◽  
Chang-Yeol Yeo ◽  
Song-Ja Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document