parasite richness
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 2522
Author(s):  
Italo Fernández ◽  
Patricio de Los Ríos-Escalante ◽  
Ariel Valenzuela ◽  
Paulina Aguayo ◽  
Carlos T. Smith ◽  
...  

Dissotichus eleginoides has a discontinuous circumpolar geographic distribution restricted to mountains and platforms, mainly in Subantarctic and Antarctic waters of the southern hemisphere, including the Southeast Pacific, Atlantic and Indian oceans and in areas surrounding the peninsular platforms of subantarctic islands. The aim of this work was to determine and characterize the gastrointestinal parasitic and microbial fauna of specimens of D. eleginoides captured in waters of the south-central zone of Chile. The magnitude of parasitism in D. eleginoides captured in waters of the south-central zone of Chile is variable, and the parasite richness is different from that reported in specimens from subantarctic environments. Next-generation sequencing (NGS) of the microbial community associated to intestine showed a high diversity, where Proteobacteria, Firmicutes, and Bacteriodetes were the dominant phyla. However, both parasitic and microbial structures can vary between fish from different geographic regions


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 439
Author(s):  
Alžbeta Šujanová ◽  
Eva Špitalská ◽  
Radovan Václav

Despite the ubiquity of disease seasonality, mechanisms behind the fluctuations in seasonal diseases are still poorly understood. Avian hemosporidiosis is increasingly used as a model for ecological and evolutionary studies on disease dynamics, but the results are complex, depending on the focus (hosts, parasites, vectors) and scale (individuals, community, populations) of the study. Here, we examine the local diversity of haemosporidian parasites and the seasonal patterns of infections, parasite richness, and diversity in a natural woodland bird community in Slovakia. In 35 avian species, we detected 111, including 19 novel, haemosporidian cytochrome b lineages. The highest numbers of lineages were detected during spring and autumn, corresponding with higher avian species richness and infection prevalence in the avian community during these periods of time. Nevertheless, the haemosporidian community in the local breeders in summer was relatively stable, Haemoproteus lineages dominated in the local avian haemosporidian community, and only few parasite lineages were abundant within each genus. While prevailing Leucocytozoon infections in spring suggest that the majority of sampled birds wintered in the Mediterranean region, Plasmodium infections in spring can be due to relapses in reproductively active short-distance migrants. Multiple haemosporidian infections, both intra- and inter-generic ones, were common in the local avian community. Infection intensity peaked during summer and tended to be higher in older birds, pointing to the role of supressed immunity in reproductively active birds.


2021 ◽  
Author(s):  
Vinícius Freitas Klain ◽  
Márcia Bohrer Mentz ◽  
Sebastián Bustamante-Manrique ◽  
Júlio César Bicca-Marques

Abstract ContextAnthropogenic habitat disturbances that affect the ecology and behavior of parasites and hosts can either facilitate or compromise their interactions and modulate the parasite richness.ObjectivesWe assessed if the size of the habitat patch, the composition and configuration of the landscape (forest cover, patch density and mean distance to the nearest patch) and host group size influence the parasite richness of brown howler monkeys (Alouatta guariba clamitans) inhabiting forest fragments immersed in an anthropogenic matrix.MethodsWe collected fecal samples from 60 howler monkey groups inhabiting distinct forest fragments (one group/fragment) from January to July 2019. We used generalized linear models to assess the power of the independent variables in predicting parasite richness at the patch- and patch-landscape scales.ResultsWe found 10 parasite taxa (five basal eukaryotes, four nematodes and one platyhelminth), nine of which also infect humans or domestic animals. Overall parasite richness showed an inverse relationship with habitat patch size and forest cover, and a direct relationship with the mean distance to the nearest patch and group size. Patch-landscape metrics and host group size also influenced the infection with parasites with direct cycle and transmission via ingestion of the infective stage in the arboreal environment or with parasites with indirect cycle and transmission via ingestion of intermediate hosts. However, all significant models presented low weight.ConclusionsWe suggest that characteristics of parasite and host populations among other factors are more critical modulators of the relationship between howler monkeys and their parasites in anthropogenic landscapes.


2021 ◽  
Author(s):  
Luz Garcia-Longoria ◽  
Jaime Muriel ◽  
Sergio Magallanes ◽  
Zaira Hellen Villa-Galarce ◽  
Leonila Ricopa ◽  
...  

Abstract Characterizing the diversity and structure of host-parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyse the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across five well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host – parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon-Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analysing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.


2021 ◽  
Vol 9 (1) ◽  
pp. 139-148
Author(s):  
Caroline R Amoroso ◽  
Charles L Nunn

Abstract Background and objectives In absolute terms, humans are extremely highly parasitized compared to other primates. This may reflect that humans are outliers in traits correlated with parasite richness: population density, geographic range area, and study effort. The high degree of parasitism could also reflect amplified disease risk associated with agriculture and urbanization. Alternatively, controlling for other variables, cultural and psychological adaptations could have reduced parasitism in humans over evolutionary time. Methodology We predicted the number of parasites that would infect a nonhuman primate with human phenotypic characteristics and phylogenetic position, and then compared observed parasitism of humans in eight geopolitical countries to the predicted distributions. The analyses incorporated study effort, phylogeny, and drivers of parasitism in 33 primate species. Results Analyses of individual countries were not supportive of either hypothesis. When analyzed collectively, however, human populations showed consistently lower than expected richness of protozoa and helminths, but higher richness of viruses. Thus, human evolutionary innovations and new parasite exposures may have impacted groups of parasites in different ways, with support for both hypotheses in the overall analysis. Conclusions and implications The high level of parasitism observed in humans only applies to viruses, and was not extreme in any of our tests of individual countries. In contrast, we find consistent reductions in protozoa and helminths across countries, suggesting reduced parasitism by these groups during human evolution. We propose that hygienic and technological advances might have extinguished fecal-orally or indirectly transmitted parasites like helminths, whereas higher human densities and host-shifting potential of viruses have supported increased virus richness. Lay Summary Vastly more parasite species infect humans than any other primate host. Controlling for factors that influence parasite richness, such as the intensity of study effort and body mass, we find that humans may have more viruses, but fewer helminths and protozoa, than expected based on evolutionary analyses of parasitism in other primates.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Roshan Babu Adhikari ◽  
Mahendra Maharjan ◽  
Tirth Raj Ghimire

Bats are the only active flying placental mammals and are traditionally classified into mega- and microbats, which are, respectively, herbivorous and insectivorous in feeding habit. Though deforestation, habitat destruction, natural calamities, illegal hunting, and climate changes are the challenging threats for bats, the role of existing gastrointestinal (GI) parasites have not been evaluated yet in Nepal. Thus, the current study aims to determine the prevalence of GI parasites in bats from the Shaktikhor area at the Chitwan district of Southcentral Nepal. From July 2018 to February 2019, a total of 60 fecal samples of bats (30 from frugivorous bats and 30 from the insectivorous bats) were collected. These samples were preserved at 2.5% potassium dichromate solution. The fecal examination was carried out by the direct wet mount, concentrations, acid-fast staining, and sporulation techniques. Overall results showed the prevalence rate of 80% GI parasites. The parasites detected in the insectivorous bats were Ascarid spp., Capillarid sp., Cryptosporidium sp., Eimeria spp., Entamoeba sp., Giardia sp., Hymenolepis spp., Isospora sp., Oxyurid sp., Strongyle, and Strongyloides sp. In contrast, Eimeria sp., Entamoeba sp., and Hymenolepis sp. were detected in the frugivorous bats. Based on a wide diversity of parasite richness and parasitic concurrency measured by the prevalence rates, we suggest that GI parasitism might be a threatening factor in the insectivorous bats in the current study area.


Author(s):  
S. Reis ◽  
M. Melo ◽  
R. Covas ◽  
C. Doutrelant ◽  
H. Pereira ◽  
...  

2020 ◽  
Vol 16 (7) ◽  
pp. 20200194
Author(s):  
Piotr Minias ◽  
Jorge S. Gutiérrez ◽  
Peter O. Dunn

Genes of the major histocompatibility complex (MHC) play a key role in the adaptive immunity of vertebrates, as they encode receptors responsible for antigen recognition. Evolutionary history of the MHC proceeded through numerous gene duplications, which increase the spectrum of pathogens recognized by individuals. Although pathogen-mediated selection is believed to be a primary driver of MHC expansion over evolutionary times, empirical evidence for this association is virtually lacking. Here, we used an extensive dataset on MHC class II copy number variation in non-passerine birds to test for an evolutionary correlation with helminth parasite richness. As expected, our phylogenetically-informed modelling revealed a positive association between MHC copy number and total helminth richness, even after controlling for a broad spectrum of ecological and life-history traits. Thus, total helminth richness appears to be the most important correlate of MHC copy number, supporting a leading role of pathogen-mediated selection in the evolution of MHC in birds. Our results provide some of the first, although correlative, evidence linking parasitism to interspecific variation in MHC copy number among birds.


Sign in / Sign up

Export Citation Format

Share Document