scholarly journals Self-emulsifying therapeutic system: a potential approach for delivery of lipophilic drugs

2011 ◽  
Vol 47 (3) ◽  
pp. 447-465 ◽  
Author(s):  
Jyoti Wadhwa ◽  
Anroop Nair ◽  
Rachna Kumria

Self-emulsifying therapeutic system (SETs) provide an effective and intelligent solution to the various issues related to the formulation of hydrophobic drugs with limited solubility in gastrointestinal fluid. Although the potential utility of SETs is well known, only in recent years has a mechanistic understanding of the impact of these systems on drug disposition emerged. These in situ emulsion-forming systems have a high stability when incorporated in various dosage forms. SETs are being looked upon as systems which can overcome the problems associated with delivery of poorly water soluble drugs. An in-depth knowledge about lipids and surfactants that can contribute to these systems, criterion for their selection and the proportion in which they can be used, represent some crucial factors determining the in vivo performance of these systems. This article presents a comprehensive account of various types of self-emulsifying formulations with emphasis on their composition and examples of currently marketed preparations.

Author(s):  
SREE VARSHINI S. ◽  
VAIYANA RAJESH C.

Ternary solid dispersion (TSD) is one of the promising approaches used in recent studies to address the issues encountered by poorly water-soluble drugs. The binary solid dispersion (BSD) with the drug and the single polymer is not sufficient to satisfy all the criteria such as improved solubility, dissolution, stability, supersaturation, and recrystallization inhibition. Hence, the TSD with the third component/ternary agent aids in overcoming the limitations, thereby enhancing the solubility and bioavailability to a greater extent when compared to the BSD. Excipients that can be used as a third component includes surfactants, pH modulator, polymer and adsorbents. All these excipients have distinct benefits in improving the efficiency of the final dosage form. However, care must be taken in selecting suitable excipients for the research. This review highlights the impact of these excipients in improving the formulation complications and the therapeutic potential of the TSD.


2021 ◽  
Vol 14 (9) ◽  
pp. 865
Author(s):  
Sabrina Knoke ◽  
Heike Bunjes

When studying the release of poorly water-soluble drugs from colloidal drug delivery systems designed for intravenous administration, the release media should preferentially contain lipophilic components that represent the physiological acceptors present in vivo. In this study, the effect of different acceptor structures was investigated by comparing the transfer of fenofibrate, retinyl acetate, and orlistat from trimyristin nanoemulsion droplets into lipid-containing hydrogel particles, as well as to bovine serum albumin (BSA). A nanodispersion based on trimyristin and cholesteryl nonanoate was incorporated into the hydrogel particles (mean diameter ~40 µm) in order to mimic the composition of lipoproteins. The course of transfer observed utilizing the lipid-containing hydrogel particles as an acceptor was in relation to the lipophilicity of the drugs: the higher the logP value, the slower the transfer. There was no detectable amount of the drugs transferred to BSA in liquid solution, demonstrating clearly that albumin alone does not contribute substantially as acceptor for the lipophilic drugs under investigation in this study. In contrast, cholesteryl nonanoate contributes to a much greater extent. However, in all cases, the partition equilibrium of the drugs under investigation was in favor of the trimyristin emulsion droplets.


2004 ◽  
Vol 93 (5) ◽  
pp. 1110-1121 ◽  
Author(s):  
Christopher J.H. Porter ◽  
Ann Marie Kaukonen ◽  
Agnes Taillardat-Bertschinger ◽  
Ben J. Boyd ◽  
Jacquelyn M. O'Connor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document