solid dispersion
Recently Published Documents


TOTAL DOCUMENTS

1752
(FIVE YEARS 545)

H-INDEX

57
(FIVE YEARS 11)

2022 ◽  
Vol 56 (1) ◽  
pp. 103-111
Author(s):  
Lavanya Bhandari ◽  
Archana S Patil ◽  
Udaykumar Bolmal ◽  
Rajashree Masareddy ◽  
Panchaxari Dandagi
Keyword(s):  

2022 ◽  
Vol 10 (1) ◽  
pp. 85
Author(s):  
Hongbo Shi ◽  
Xikun Wang ◽  
Qingjiang Xiang ◽  
Gonghe Zhang ◽  
Lin Xue

In the marine fire suppression system, continuous delivery of dry chemical powder to the fire source with long powder discharge range and high dispersion concentration is essential. The work is devoted to experimental and numerical studies of the flow characteristics of the dry chemical powder jet from a horizontal injector with a wide range of Stokes numbers between 6 to 30 and Reynolds numbers between 4792 to 23,960 by considering the effect of gravitational acceleration. A CFD-based Eulerian–Eulerian multiphase model combined with Standard k-ω turbulence model was used to predict flow characteristics of particle-laden jet using dimensionless numbers, including the solid volume fraction, the normalized velocity magnitude, and the turbulent viscosity ratio. Experimental studies have been carried out for three different inflow velocities (2.06, 2.45, and 2.81 m/s). The results indicate that the particle density plays a significant role in the dispersion of the particles in the radial and axial directions. The transition from U-shaped to V-shaped solid dispersion structure on the ground can be captured with the increase of particle density. Moreover, the higher level turbulence intensity enhances the solid dispersion concentration. Finally, it was found that the Portland cement powder exhibits better discharge performance in terms of solid discharge range and dispersion concentration in comparison with other dry powders. These results have implications in the design of powder-based fire suppression system. Further studies should aim to the in-depth research on the fire extinguishing mechanism of the Portland cement powder, especially the fire suppression effectiveness and thermal decomposition process.


Author(s):  
RAHUL RADKE ◽  
NEETESH K. JAIN

Objective: The aim of this investigation was to enhance the solubility and bioavailability of the BCS class II poorly water-soluble drug ambrisentan by solid dispersion (SD) techniques using Gelucire 50/13 as a hydrophilic carrier. Methods: Solid dispersion of ambrisentan was prepared by kneading method using different dug: carrier ratios. Prepared SD was characterized for solubility, drug content, percentage yield, in vitro dissolution, ex vivo permeation and bioavailability. Solid-state characterization was performed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results: All the SDs formulations showed increase in drug solubility and dissolution when compared with its pure form. Aqueous solubility of the drug was found to be increased 8.23 fold in SD. DSC study showed that endothermic peak of the drug was disappeared in spectra of SD, confirming its amorphous conversion, XRD study revealed the reduction to almost absence of specific high-intensity peaks of drug which confirmed the reduction of crysatallinity of ambrisentan in SD. SEM of optimized SD formulation demonstrates the complete encapsulation and solubilization drug. In vitro dissolution study showed that optimized SD formulation (ASD4) gives the faster drug release of 101.5% in 60 min, as compare to its pure form and other SD formulations. Conclusion: Solid dispersion ASD4 prepared with 1:4 drug to carrier ratio showed the highest drug solubility and in vitro dissolution. The ex vivo and in vivo studies performed on optimized formulation ASD4 showed enhancement in drug permeability and bioavailability in Gelucire 50/13 based SD formulation.


Author(s):  
Kanidta Kaewkroek ◽  
Arpa Petchsomrit ◽  
Abdi Wira Septama ◽  
Ruedeekorn Wiwattanapatapee

2021 ◽  
Vol 9 (12) ◽  
pp. 363-369
Author(s):  
Ayesha Naz ◽  
◽  
Syeda Kulsum ◽  
Mehraj Begum ◽  
Mohammed Omer ◽  
...  

Objective: The research aims to formulate and evaluate Solid Dispersion tablets of Silymarin. Methods: Solid dispersions of Silymarin were prepared with various concentrations of carriers by using solvent evaporation method. The prepared solid dispersions were compressed into tablets by using 8 mm punch rotary tablet punching machine, with the hardness of 3.5kg /cm2.The formulated tablets were evaluated for various quality control parameters. Results: Silymarin was mixed with various proportions of excipients which showed no drug-excipients interactions. The precompression blend of Silymarin solid dispersions were characterized with respect to angle of repose, bulk density, tapped density, Carrs index and Hausners ratio. The precompression blend of all the batches indicated good to fair flowability and compressibility. Conclusion: The tablet passed all the tests. Among all the formulations F4 formulation containing, Drug and PEG 4000 in the ratio of 1:4 showed good result that is 94.95 % in 60 minutes. As the concentration of polymer increased the drug release was increased. While the formulations containing PEG 6000 showed less release. Hence from the dissolution data it was evident that F4 formulation is the better formulation.


Sign in / Sign up

Export Citation Format

Share Document