in vivo pharmacokinetics
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 57)

H-INDEX

37
(FIVE YEARS 3)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2158
Author(s):  
Khaled H. Al Zahabi ◽  
Hind Ben tkhayat ◽  
Ehab Abu-Basha ◽  
Al Sayed Sallam ◽  
Husam M. Younes

Spray-congealing (SPC) technology was utilized to prepare lipid-based microparticles (MP) capable of sustaining the release of Vildagliptin (VG) for use as a once-daily treatment for type 2 diabetes mellitus. VG microparticles were prepared using Compritol® and Gelucire®50/13 as lipid carriers in the presence of various amounts of Carbomer 934 NF. The lipid carriers were heated to 10 °C above their melting points, and VG was dispersed in the lipid melt and sprayed through the heated two-fluid nozzle of the spray congealer to prepare the VG-loaded MP (VGMP). The microparticles produced were then compressed into tablets and characterized for their morphological and physicochemical characteristics, content analysis, in vitro dissolution, and in vivo bioavailability studies in mixed-breed dogs. The VGMP were spherical with a yield of 76% of the total amount. VG was found to be in its semicrystalline form, with a drug content of 11.11% per tablet and a percentage drug recovery reaching 98.8%. The in vitro dissolution studies showed that VG was released from the tableted particles in a sustained-release fashion for up to 24 h compared with the immediate-release marketed tablets from which VG was completely released within 30 min. The in vivo pharmacokinetics studies reported a Cmax, Tmax, T1/2, and MRT of 118 ng/mL, 3.4 h, 5.27 h, and 9.8 h, respectively, for the SPC formulations, showing a significant difference (p < 0.05)) from the pk parameters of the immediate-release marketed drug (147 ng/mL, 1 h, 2.16 h, and 2.8 h, respectively). The area under the peak (AUC) of both the reference and tested formulations was comparable to indicate similar bioavailabilities. The in vitro–in vivo correlation (IVIVC) studies using multiple level C correlations showed a linear correlation between in vivo pharmacokinetics and dissolution parameters. In conclusion, SPC was successfully utilized to prepare a once-daily sustained-release VG oral drug delivery system.


2021 ◽  
Author(s):  
Satomi Imaide ◽  
Kristin M. Riching ◽  
Nikolai Makukhin ◽  
Vesna Vetma ◽  
Claire Whitworth ◽  
...  

Bivalent PROTACs work drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhanced degradation. Here, we designed trivalent PROTACs consisting of a bivalent BET inhibitor and an E3 ligand, tethered via a branched linker. We identified VHL-based SIM1 as a low picomolar BET degrader, with preference for BRD2. Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anti-cancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Samar A Rizk ◽  
Manal A Elsheikh ◽  
Yosra S R Elnaggar ◽  
Ossama Y Abdallah

Aim: The aim of this study was to elaborate on ‘bioemulsomes,' novel biocompatible lipoprotein analogs for effective lymphatic transport of baicalin (BCL). Methods: BCL bioemulsomes were developed and optimized and in vitro physicochemical characterization performed. The bioavailability of BCL bioemulsomes compared with free BCL was investigated using in vivo pharmacokinetics studies. Finally, BCL lymphatic transport was assessed via cycloheximide blockade assay. Results: Optimized BCL-loaded nanoemulsomes showed promising in vitro characteristics that favor lymphatic targeting. In vivo pharmacokinetics showed a significant improvement in bioavailability over free BCL. A significant decrease in BCL emulsome absorption (33%) was exhibited after chemical blockage of the lymphatic pathway, confirming the lymphatic transport potential. Conclusion: Bioemulsomes could be a promising tool for bypassing BCL oral delivery hurdles as well as lymphatic transport, paving the way for potential treatment of lymphoma.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 958
Author(s):  
Eun Suk Son ◽  
Xiang Fei ◽  
Jin-Ha Yoon ◽  
Seung-Yong Seo ◽  
Han-Joo Maeng ◽  
...  

Sulforaphane (SFN), belonging to the isothiocyanate family, has received attention owing to its beneficial activities, including chemopreventive and antifibrotic effects. As sulforaphane N-acetylcysteine (SFN-NAC), a major sulforaphane metabolite, has presented similar pharmacological activities to those of SFN, it is crucial to simultaneously analyze the pharmacokinetics and activities of SFN and SFN-NAC, to comprehensively elucidate the efficacy of SFN-containing products. Accordingly, the anti-pulmonary fibrotic effects of SFN and SFN-NAC were assessed, with simultaneous evaluation of permeability, metabolic stability, and in vivo pharmacokinetics. Both SFN and SFN-NAC decreased the levels of transforming growth factor-β1-induced fibronectin, alpha-smooth muscle actin, and collagen, which are major mediators of fibrosis, in MRC-5 fibroblast cells. Regarding pharmacokinetics, SFN and SFN-NAC were metabolically unstable, especially in the plasma. SFN-NAC degraded considerably faster than SFN in plasma, with SFN being formed from SFN-NAC. In rats, SFN and SFN-NAC showed a similar clearance when administered intravenously; however, SFN showed markedly superior absorption when administered orally. Although the plasma SFN-NAC concentration was low owing to poor absorption following oral administration, SFN-NAC was converted to SFN in vivo, as in plasma. Collectively, these data suggest that SFN-NAC could benefit a prodrug formulation strategy, possibly avoiding the gastrointestinal side effects of SFN, and with improved SFN-NAC absorption.


Sign in / Sign up

Export Citation Format

Share Document