lipid digestion
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 108)

H-INDEX

39
(FIVE YEARS 7)

Author(s):  
Sébastien Marze

Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qianhong Yang ◽  
Xiaolu Bai ◽  
Xiang Li ◽  
Wei Hu

Purpose. Heart failure (HF) is a clinical syndrome caused by ventricular insufficiency. In order to further explore the biomarkers related to HF, we apply the high-throughput database. Materials and Methods. The GSE21610 was applied for the differentially expressed gene (DEG) analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was performed to assess Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The Gene Set Enrichment Analysis (GSEA) was used for gene expression profile GSE21610. The Protein-Protein Interaction (PPI) network and modules were also constructed for research. These hub gene function pathways were estimated in HF progression. Result. We have identified 434 DEGs in total, including 304 downregulated DEGs and 130 upregulated DEGs. GO and KEGG illustrated that DEGs in HF were significantly enriched in G protein-coupled receptor binding, peroxisome, and cAMP signaling pathway. GSEA results showed gene set GSE21610 was gathered in lipid digestion, defense response to fungus, and intestinal lipid absorption. Finally, through analyzing the PPI network, we screened hub genes CDH1, TFRC, CCL2, BUB1B, and CD19 by the Cytoscape software. Conclusion. This study uses a series of bioinformatics technologies to obtain hug genes and key pathways related to HF. These analysis results provide us with new ideas for finding biomarkers and treatment methods for HF.


2021 ◽  
Author(s):  
April X. Xu ◽  
Elizabeth A. L. West ◽  
Pedram Nasr ◽  
Zhitong Zhou ◽  
Maria G. Corradini ◽  
...  

Author(s):  
Ben J. Boyd ◽  
Andrew J. Clulow

This review will focus on orally administered lipid-based drug delivery vehicles and specifically the influence of lipid digestion on the structure of the carrier lipids and their entrained drug cargoes. Digestion of the formulation lipids, which are typically apolar triglycerides, generates amphiphilic monoglycerides and fatty acids that can self-assemble into a diverse array of liquid crystalline structures. Tracking the dynamic changes in self-assembly of the lipid digestion products during digestion has recently been made possible using synchrotron-based small angle X-ray scattering. The influence of lipid chain length and degree of unsaturation on the resulting lipid structuring will be described in the context of the critical packing parameter theory. The chemical and structural transformation of the formulation lipids can also have a dramatic impact on the physical state of drugs co-administered with the formulation. It is often assumed that the best strategy for drug development is to maximise drug solubility in the undigested formulation lipids and to incorporate additives to maintain drug solubility during digestion. However, it is possible to improve drug absorption using lipid digestion in cases where the solubility of the dosed drug or one of its polymorphic forms is greater in the digested lipids. Three different fates for drugs administered with digestible lipid-based formulations will be discussed: (1) where the drug is more soluble in the undigested formulation lipids; (2) where the drug undergoes a polymorphic transformation during lipid digestion; and (3) where the drug is more soluble in the digested formulation lipids.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1312
Author(s):  
Iram Shahzadi ◽  
Andrea Fürst ◽  
Patrick Knoll ◽  
Andreas Bernkop-Schnürch

This study was aimed to evaluate the impact of surfactants used for nanostructured lipid carriers (NLCs) to provide enzymatic protection for incorporated peptides. Insulin as a model peptide was ion paired with sodium dodecyl sulfate to improve its lipophilicity. Three NLC formulations containing polyethylene glycol ester (PEG-ester), polyethylene glycol ether (PEG-ether), and polyglycerol ester (PG-ester) surfactants were prepared by solvent diffusion method. NLCs were characterized regarding particle size, polydispersity index, and zeta potential. Biocompatibility of NLCs was assessed on Caco-2 cells via resazurin assay. In vitro lipolysis study was performed using a standard lipid digestion method. Proteolytic studies were performed in simulated gastric fluid containing pepsin and simulated intestinal fluid containing pancreatin. Lipophilicity of insulin in terms of log Poctanol/water was improved from −1.8 to 2.1. NLCs were in the size range of 64–217 nm with a polydispersity index of 0.2–0.5 and exhibited a negative surface charge. PG-ester NLCs were non-cytotoxic up to a concentration of 0.5%, PEG-ester NLCs up to a concentration of 0.25% and PEG-ether NLC up to a concentration of 0.125% (w/v). The lipolysis study showed the release of >90%, 70%, and 10% of free fatty acids from PEG-ester, PG-ester, and PEG-ether NLCs, respectively. Proteolysis results revealed the highest protective effect of PEG-ether NLCs followed by PG-ester and PEG-ester NLCs for incorporated insulin complex. Findings suggest that NLCs bearing substructures less susceptible to degrading enzymes on their surface can provide higher protection for incorporated peptides toward gastrointestinal proteases.


Sign in / Sign up

Export Citation Format

Share Document