Exemplar Abstract for Chlorobaculum tepidum (Wahlund et al. 1996) Imhoff 2003 and Chlorobium tepidum Wahlund et al. 1996.

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
2010 ◽  
Vol 104 (2-3) ◽  
pp. 153-162 ◽  
Author(s):  
Kalliopi Kouyianou ◽  
Michalis Aivaliotis ◽  
Kris Gevaert ◽  
Michael Karas ◽  
Georgios Tsiotis

2008 ◽  
Vol 191 (3) ◽  
pp. 1026-1034 ◽  
Author(s):  
Leong-Keat Chan ◽  
Rachael M. Morgan-Kiss ◽  
Thomas E. Hanson

ABSTRACT Sulfide:quinone oxidoreductase (SQR) catalyzes sulfide oxidation during sulfide-dependent chemo- and phototrophic growth in bacteria. The green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum) can grow on sulfide as the sole electron donor and sulfur source. C. tepidum contains genes encoding three SQR homologs: CT0117, CT0876, and CT1087. This study examined which, if any, of the SQR homologs possess sulfide-dependent ubiquinone reduction activity and are required for growth on sulfide. In contrast to CT0117 and CT0876, transcripts of CT1087 were detected only when cells actively oxidized sulfide. Mutation of CT0117 or CT1087 in C. tepidum decreased SQR activity in membrane fractions, and the CT1087 mutant could not grow with ≥6 mM sulfide. Mutation of both CT0117 and CT1087 in C. tepidum completely abolished SQR activity, and the double mutant failed to grow with ≥4 mM sulfide. A C-terminal His6-tagged CT1087 protein was membrane localized, as was SQR activity. Epitope-tagged CT1087 was detected only when sulfide was actively consumed by cells. Recombinantly produced CT1087 and CT0117 proteins had SQR activity, while CT0876 did not. In summary, we conclude that, under the conditions tested, both CT0117 and CT1087 function as SQR proteins in C. tepidum. CT0876 may support the growth of C. tepidum at low sulfide concentrations, but no evidence was found for SQR activity associated with this protein.


1999 ◽  
Vol 69 (3) ◽  
pp. 322 ◽  
Author(s):  
Cornelis A. van Walree ◽  
Yumiko Sakuragi ◽  
Dorte B. Steensgaard ◽  
Carola S. Bösinger ◽  
Niels-Ulrik Frigaard ◽  
...  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Nicole Danielle Osier ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Nicole Danielle Osier ◽  
George M Garrity

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Jacob M. Hilzinger ◽  
Vidhyavathi Raman ◽  
Kevin E. Shuman ◽  
Brian J. Eddie ◽  
Thomas E. Hanson

ABSTRACT The green sulfur bacteria ( Chlorobiaceae ) are anaerobes that use electrons from reduced sulfur compounds (sulfide, S 0 , and thiosulfate) as electron donors for photoautotrophic growth. Chlorobaculum tepidum , the model system for the Chlorobiaceae , both produces and consumes extracellular S 0 globules depending on the availability of sulfide in the environment. These physiological changes imply significant changes in gene regulation, which has been observed when sulfide is added to Cba. tepidum growing on thiosulfate. However, the underlying mechanisms driving these gene expression changes, i.e., the specific regulators and promoter elements involved, have not yet been defined. Here, differential RNA sequencing (dRNA-seq) was used to globally identify transcript start sites (TSS) that were present during growth on sulfide, biogenic S 0 , and thiosulfate as sole electron donors. TSS positions were used in combination with RNA-seq data from cultures growing on these same electron donors to identify both basal promoter elements and motifs associated with electron donor-dependent transcriptional regulation. These motifs were conserved across homologous Chlorobiaceae promoters. Two lines of evidence suggest that sulfide-mediated repression is the dominant regulatory mode in Cba. tepidum . First, motifs associated with genes regulated by sulfide overlap key basal promoter elements. Second, deletion of the Cba. tepidum 1277 ( CT1277 ) gene, encoding a putative regulatory protein, leads to constitutive overexpression of the sulfide:quinone oxidoreductase CT1087 in the absence of sulfide. The results suggest that sulfide is the master regulator of sulfur metabolism in Cba. tepidum and the Chlorobiaceae . Finally, the identification of basal promoter elements with differing strengths will further the development of synthetic biology in Cba. tepidum and perhaps other Chlorobiaceae . IMPORTANCE Elemental sulfur is a key intermediate in biogeochemical sulfur cycling. The photoautotrophic green sulfur bacterium Chlorobaculum tepidum either produces or consumes elemental sulfur depending on the availability of sulfide in the environment. Our results reveal transcriptional dynamics of Chlorobaculum tepidum on elemental sulfur and increase our understanding of the mechanisms of transcriptional regulation governing growth on different reduced sulfur compounds. This report identifies genes and sequence motifs that likely play significant roles in the production and consumption of elemental sulfur. Beyond this focused impact, this report paves the way for the development of synthetic biology in Chlorobaculum tepidum and other Chlorobiaceae by providing a comprehensive identification of promoter elements for control of gene expression, a key element of strain engineering.


Sign in / Sign up

Export Citation Format

Share Document