green sulfur
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 36)

H-INDEX

47
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4040
Author(s):  
Ali Shaan Manzoor Ghumman ◽  
Rashid Shamsuddin ◽  
Mohamed Mahmoud Nasef ◽  
Efrem G. Krivoborodov ◽  
Sohaira Ahmad ◽  
...  

Global enhancement of crop yield is achieved using chemical fertilizers; however, agro-economy is affected due to poor nutrient uptake efficacy (NUE), which also causes environmental pollution. Encapsulating urea granules with hydrophobic material can be one solution. Additionally, the inverse vulcanized copolymer obtained from vegetable oils are a new class of green sulfur-enriched polymer with good biodegradation and better sulfur oxidation potential, but they possess unreacted sulfur, which leads to void generations. In this study, inverse vulcanization reaction conditions to minimize the amount of unreacted sulfur through response surface methodology (RSM) is optimized. The copolymer obtained was then characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR confirmed the formation of the copolymer, TGA demonstrated that copolymer is thermally stable up to 200 °C temperature, and DSC revealed the sulfur conversion of 82.2% (predicted conversion of 82.37%), which shows the goodness of the model developed to predict the sulfur conversion. To further maximize the sulfur conversion, 5 wt% diisopropenyl benzene (DIB) as a crosslinker is added during synthesis to produce terpolymer. The urea granule is then coated using terpolymer, and the nutrient release longevity of the coated urea is tested in distilled water, which revealed that only 65% of its total nutrient is released after 40 days of incubation. The soil burial of the terpolymer demonstrated its biodegradability, as 26% weight loss happens in 52 days of incubation. Thus, inverse vulcanized terpolymer as a coating material for urea demonstrated far better nutrient release longevity compared with other biopolymers with improved biodegradation; moreover, these copolymers also have potential to improve sulfur oxidation.


2021 ◽  
Author(s):  
Verena Nikeleit ◽  
Adrian Mellage ◽  
Giorgio Bianchini ◽  
Lea Sauter ◽  
Steffen Buessecker ◽  
...  

Anoxygenic phototrophic Fe(II)-oxidizers (photoferrotrophs) are thought to have thrived in Earth’s ancient ferruginous oceans and played a primary role in the precipitation of Archean and Paleoproterozoic (3.8-1.85 Ga) banded iron formations (BIF). The end of BIF deposition by photoferrotrophs has often been interpreted as being the result a deepening of water column oxygenation below the photic zone concomitant with the proliferation of cyanobacteria. We suggest here that a potentially overlooked aspect influencing BIF precipitation by photoferrotrophs is competition with another anaerobic Fe(II)-oxidizing metabolism. It is speculated that microorganisms capable of coupling Fe(II) oxidation to the reduction of nitrate were also present early in Earth history when BIF were being deposited, but the extent to which they could compete with photoferrotrophs when favourable geochemical conditions overlapped is unknown. Utilizing microbial incubations and numerical modelling, we show that nitrate-reducing Fe(II)-oxidizers metabolically outcompete photoferrotrophs for dissolved Fe(II). Moreover, the nitrate-reducing Fe(II)-oxidizers inhibit photoferrotrophy via the production of toxic nitric oxide (NO). Four different photoferrotrophs, representing both green sulfur and purple non-sulfur bacteria, are susceptible to this toxic effect despite having genomic capabilities for NO detoxification. Indeed, despite NO detoxification mechanisms being ubiquitous in some groups of phototrophs at the genomic level (e.g. Chlorobi and Cyanobacteria) it is likely they would still be influenced by NO stress. We suggest that the production of NO during nitrate-reducing Fe(II) oxidation in ferruginous environments represents an as yet unreported control on the activity of photoferrotrophs in the ancient oceans and thus the mechanisms driving precipitation of BIF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicholas Lambrecht ◽  
Zackry Stevenson ◽  
Cody S. Sheik ◽  
Matthew A. Pronschinske ◽  
Hui Tong ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicholas Lambrecht ◽  
Zackry Stevenson ◽  
Cody S. Sheik ◽  
Matthew A. Pronschinske ◽  
Hui Tong ◽  
...  

Anoxygenic phototrophic bacteria can be important primary producers in some meromictic lakes. Green sulfur bacteria (GSB) have been detected in ferruginous lakes, with some evidence that they are photosynthesizing using Fe(II) as an electron donor (i.e., photoferrotrophy). However, some photoferrotrophic GSB can also utilize reduced sulfur compounds, complicating the interpretation of Fe-dependent photosynthetic primary productivity. An enrichment (BLA1) from meromictic ferruginous Brownie Lake, Minnesota, United States, contains an Fe(II)-oxidizing GSB and a metabolically flexible putative Fe(III)-reducing anaerobe. “Candidatus Chlorobium masyuteum” grows photoautotrophically with Fe(II) and possesses the putative Fe(II) oxidase-encoding cyc2 gene also known from oxygen-dependent Fe(II)-oxidizing bacteria. It lacks genes for oxidation of reduced sulfur compounds. Its genome encodes for hydrogenases and a reverse TCA cycle that may allow it to utilize H2 and acetate as electron donors, an inference supported by the abundance of this organism when the enrichment was supplied by these substrates and light. The anaerobe “Candidatus Pseudopelobacter ferreus” is in low abundance (∼1%) in BLA1 and is a putative Fe(III)-reducing bacterium from the Geobacterales ord. nov. While “Ca. C. masyuteum” is closely related to the photoferrotrophs C. ferroooxidans strain KoFox and C. phaeoferrooxidans strain KB01, it is unique at the genomic level. The main light-harvesting molecule was identified as bacteriochlorophyll c with accessory carotenoids of the chlorobactene series. BLA1 optimally oxidizes Fe(II) at a pH of 6.8, and the rate of Fe(II) oxidation was 0.63 ± 0.069 mmol day–1, comparable to other photoferrotrophic GSB cultures or enrichments. Investigation of BLA1 expands the genetic basis for phototrophic Fe(II) oxidation by GSB and highlights the role these organisms may play in Fe(II) oxidation and carbon cycling in ferruginous lakes.


Author(s):  
Christopher J. Gisriel ◽  
Chihiro Azai ◽  
Tanai Cardona

AbstractPhotosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs.


2021 ◽  
Vol 22 (12) ◽  
pp. 6398
Author(s):  
Ivan Kushkevych ◽  
Jiří Procházka ◽  
Márió Gajdács ◽  
Simon K.-M. R. Rittmann ◽  
Monika Vítězová

There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed.


Author(s):  
Yixin Huang ◽  
Dongmei Cao

AbstractDue to safety issues when passengers get on and off the subway and spend a lot of time on the subway, this makes subway station signs very important. Moreover, in case of fire and other dangerous situations and emergency evacuation, the guiding signs must be able to guide passengers to leave the station and dangerous areas efficiently and orderly, so as to protect the personal and property safety of passengers. The purpose of this study was to analyze the decision response of subway evacuation signs using the characteristics of the brain components. In this study, subway model is constructed. When you perform simulation using software, you need to fine tune the parameters to get the best simulation effect. A questionnaire survey was made on the components of the subway sign. The results show that the number of people who think that the standard font of the blackboard logo is the most representative of the emergency exit, accounting for 78.2% of the total number of people, taking the image as the first choice accounted for 52.9% of the total number of people, and the green sulfur powder logo as the first choice accounted for 69.8% of the total number. This study makes an important contribution to the research of subway traffic safety problems.


2021 ◽  
Author(s):  
LM Ward ◽  
PM Shih

AbstractWhile most productivity on the surface of the Earth today is fueled by oxygenic photosynthesis, during the early parts of Earth history it is thought that anoxygenic photosynthesis—using compounds like ferrous iron or sulfide as electron donors—drove most global carbon fixation. Anoxygenic photosynthesis is still performed by diverse bacteria in niche environments today. Of these, the Chlorobi (formerly green sulfur bacteria) are often interpreted as being particularly ancient and are frequently proposed to have fueled the biosphere early in Earth history before the rise of oxygenic photosynthesis. Here, we perform comparative genomic, phylogenetic, and molecular clock analyses to determine the antiquity of the Chlorobi and their characteristic phenotypes. We show that contrary to common assumptions, the Chlorobi clade is relatively young, with anoxygenic phototrophy, carbon fixation via the rTCA pathway, and iron oxidation all significantly postdating the rise of oxygen ~2.3 billion years ago. The Chlorobi therefore could not have fueled the Archean biosphere, but instead represent a relatively young radiation of organisms which likely acquired the capacity for anoxygenic photosynthesis and other traits via horizontal gene transfer sometime after the evolution of oxygenic Cyanobacteria.


2021 ◽  
Author(s):  
Maureen Berg ◽  
Danielle Goudeau ◽  
Charles Olmsted ◽  
Katherine D. McMahon ◽  
Senay Yitbarek ◽  
...  

AbstractTemperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.


Sign in / Sign up

Export Citation Format

Share Document